This study investigates the influence of perceived value and perceived risk on consumer intentions to purchase counterfeit luxury goods, drawing upon an integrated theoretical framework encompassing perceived value theory, risk perception theory, and consumer behavior models. Through a quantitative research design involving a structured survey and Structural Equation Modeling (SEM), the study examines the relationships among perceived value dimensions (functional, emotional, social, economic), perceived risk factors (financial, social, performance), consumer attitudes, and purchase intentions. The findings reveal that perceived value positively influences purchase intentions, with consumer attitudes acting as a critical mediating mechanism. Conversely, perceived risk negatively impacts purchase intentions, with this relationship also mediated by consumer attitudes. Furthermore, Bayesian Network analysis uncovers the indirect pathways through which perceived risk shapes purchase intentions via its influence on consumer attitudes. By integrating these theoretical frameworks and employing advanced analytical techniques, this study contributes to a comprehensive understanding of the complex decision-making processes underlying counterfeit luxury goods consumption. The findings provide valuable insights for policymakers, luxury brand managers, and consumer protection agencies in devising targeted strategies to address consumer perceptions of value and risk, ultimately mitigating the proliferation of counterfeit luxury goods.
In the era of artificial intelligence, smart clothing, as a product of the interaction between fashion clothing and intelligent technology, has increasingly attracted the attention and affection of enterprises and consumers. However, to date, there is a lack of focus on the demand of silver-haired population’s consumers for smart clothing. To adapt to the rapidly aging modern society, this paper explores the influencing factors of silver-haired population’s demand for smart clothing and proposes a corresponding consumer-consumption-need theoretical model (CCNTM) to further promote the development of the smart clothing industry. Based on literature and theoretical research, using the technology acceptance model (TAM) and functional-expressive-aesthetic consumer needs model (FEAM) as the foundation, and introducing interactivity and risk perception as new external variables, a consumer-consumption-need theoretical model containing nine variables including perceived usefulness, perceived ease of use, functionality, expressiveness, aesthetics, interactivity, risk perception, purchase attitude, and purchase intention was constructed. A questionnaire survey was conducted among the Chinese silver-haired population aged 55–65 using the Questionnaire Star platform, with a total of 560 questionnaires issued. The results show that the functionality, expressiveness, interactivity, and perceived ease of use of smart clothing significantly positively affect perceived usefulness (P < 0.01); perceived usefulness, perceived ease of use, aesthetics, and interactivity significantly positively affect the purchase attitude of the silver-haired population (P < 0.01); perceived usefulness, aesthetics, interactivity, and purchase attitude significantly positively affect the purchase intention of the silver-haired population (P < 0.01); functionality and expressiveness significantly positively affect perceived ease of use (P < 0.01); risk perception significantly negatively affects purchase attitude (P < 0.01). Through the construction and empirical study of the smart clothing consumer-consumption-need theoretical model, this paper hopes to stimulate the purchasing behavior of silver-haired population’s consumers towards smart clothing and enable them to enjoy the benefits brought by scientific and technological advancements, which to live out their golden years in comfort, also, promote the rapid development of the smart clothing industry.
Ticket revenues are crucial for the financial success of sports teams. To maximize these revenues, teams continuously explore effective ticket promotional strategies. One such strategy includes partial season plans, which mirror bundle offers common across various industries. Another widespread promotional strategy across industries is offering discounted credit (i.e., store credit purchased at a lower price than its face value). However, its application in sports (e.g., providing a $500 credit for tickets at $450) remains limited. Therefore, this study explores critical questions such as: “How effective is offering discounted credit compared to partial season plans?” and “What factors influence ticket promotion preferences?” Consequently, the study employed a 2 × 2 × 2 experimental designs, considering three independent variables: promotion type (discounted credit vs. partial season plans), promotion flexibility (predefined vs. customizable), and the consumer’s distance to the venue (near vs. distant). Results indicated that partial season plans generated significantly higher perceived value and purchase intentions while presenting lower perceived risks than discounted credit . Promotion flexibility did not significantly influence the three dependent variables , but the distance to the venue did . Both practical and theoretical implications of these findings are discussed.
Copyright © by EnPress Publisher. All rights reserved.