The idea of a smart city has evolved in recent years from limiting the city’s physical growth to a comprehensive idea that includes physical, social, information, and knowledge infrastructure. As of right now, many studies indicate the potential advantages of smart cities in the fields of education, transportation, and entertainment to achieve more sustainability, efficiency, optimization, collaboration, and creativity. So, it is necessary to survey some technical knowledge and technology to establish the smart city and digitize its services. Traffic and transportation management, together with other subsystems, is one of the key components of creating a smart city. We specify this research by exploring digital twin (DT) technologies and 3D model information in the context of traffic management as well as the need to acquire them in the modern world. Despite the abundance of research in this field, the majority of them concentrate on the technical aspects of its design in diverse sectors. More details are required on the application of DTs in the creation of intelligent transportation systems. Results from the literature indicate that implementing the Internet of Things (IoT) to the scope of traffic addresses the traffic management issues in densely populated cities and somewhat affects the air pollution reduction caused by transportation systems. Leading countries are moving towards integrated systems and platforms using Building Information Modelling (BIM), IoT, and Spatial Data Infrastructure (SDI) to make cities smarter. There has been limited research on the application of digital twin technology in traffic control. One reason for this could be the complexity of the traffic system, which involves multiple variables and interactions between different components. Developing an accurate digital twin model for traffic control would require a significant amount of data collection and analysis, as well as advanced modeling techniques to account for the dynamic nature of traffic flow. We explore the requirements for the implementation of the digital twin in the traffic control industry and a proper architecture based on 6 main layers is investigated for the deployment of this system. In addition, an emphasis on the particular function of DT in simulating high traffic flow, keeping track of accidents, and choosing the optimal path for vehicles has been reviewed. Furthermore, incorporating user-generated content and volunteered geographic information (VGI), considering the idea of the human as a sensor, together with IoT can be a future direction to provide a more accurate and up-to-date representation of the physical environment, especially for traffic control, according to the literature review. The results show there are some limitations in digital twins for traffic control. The current digital twins are only a 3D representation of the real world. The difficulty of synchronizing real and virtual world information is another challenge. Eventually, in order to employ this technology as effectively as feasible in urban management, the researchers must address these drawbacks.
Iran has one of the oldest civilizations in the world, and many elements of today’s urban planning and design have their origins in the country. However, mass country-city migration from the 1960s onwards brought enormous challenges for the country’s main cities in the provision of adequate housing and associated services, resulting in a range of sub-standard housing solutions, particularly in Tehran, the capital city. At the same time, and notably in the past decade, Iran’s main cities have had significant involvement in the smart city movement. The Smart Tehran Program is currently underway, attempting to transition the capital towards a smart city by 2025. This study adopts a qualitative, inductive approach based on secondary sources and interview evidence to explore the current housing problems in Tehran and their relationship with the Smart Tehran Program. It explores how housing has evolved in Tehran and identifies key aspects of the current provision, and then assesses the main components of the Smart Tehran Program and their potential contribution to remedying the housing problems in the city. The article concludes that although housing related issues are at least being raised via the new smart city technology infrastructure, any meaningful change in housing provision is hampered by the over centralized and bureaucratic political system, an out of date planning process, lack of integration of planning and housing initiatives, and the limited scope for real citizen participation.
This study delves into the evolving landscape of smart city development in Kazakhstan, a domain gaining increasing relevance in the context of urban modernization and digital transformation. The research is anchored in the quest to understand how specific technological factors influence the formation of smart cities within the region. To this end, the study adopts a Spatial Autoregressive Model (SAR) as its core analytical tool, leveraging data on server density, cloud service usage, and electronic invoicing practices across various Kazakhstani cities. The crux of the research revolves around assessing the impact of these selected technological variables on the smart city development process. The SAR model’s application facilitates a nuanced understanding of the spatial dynamics at play, offering insights into how these factors vary in influence across different urban areas. A key finding of this investigation is the significant positive correlation between the adoption of electronic invoicing and smart city development, a result that stands in contrast to the relatively insignificant impact of server density and cloud service usage. The conclusion drawn from these findings underscores the pivotal role of digital administrative processes, particularly electronic invoicing, in driving the smart city agenda in Kazakhstan. This insight not only contributes to the academic discourse on smart cities but also holds practical implications for policymakers and urban planners. It suggests a strategic shift towards prioritizing digital administrative innovations over mere infrastructural or technological upgrades. The study’s outcomes are poised to guide future smart city initiatives in Kazakhstan and offer a reference point for similar emerging economies embarking on their smart city journeys.
Increasing number of smart cities, the rise of technology and urban population engagement in urban management, and the scarcity of open data for evaluating sustainable urban development determines the necessity of developing new sustainability assessment approaches. This study uses passive crowdsourcing together with the adapted SULPiTER (Sustainable Urban Logistics Planning to Enhance Regional freight transport) methodology to assess the sustainable development of smart cities. The proposed methodology considers economic, environmental, social, transport, communication factors and residents’ satisfaction with the urban environment. The SULPiTER relies on experts in selection of relevant factors and determining their contribution to the value of a sustainability indicator. We propose an alternative approach based on automated data gathering and processing. To implement it, we build an information service around a formal knowledge base that accumulates alternative workflows for estimation of indicators and allows for automatic comparison of alternatives and aggregation of their results. A system architecture was proposed and implemented with the Astana Opinion Mining service as its part that can be adjusted to collect opinions in various impact areas. The findings hold value for early identification of problems, and increasing planning and policies efficiency in sustainable urban development.
Copyright © by EnPress Publisher. All rights reserved.