This article refers to Hallstatt in Austria and Ioannina in Greece. The goals analyze the two locations that have similarities in geometric shape, digital elevation model (DEM), and geomorphology. Firstly, Hallsatt’s advances were more technical than aesthetic. There is a general tendency towards extravagance and baroque and Greco-Oriental influences. Secondly, Ioannina is a mountainous city located around Lake Pamvotis. The geometry develops parallel to the lake. The city experiences many cultures. The ancient city had an urban planning that characterized the Ottoman Empire. In the old part, there is the castle, old stone streets, wooden houses, and the house of the Greek Muslim Ali Pasha. The author obtains numerous aerial photographs using Google Earth software. The photographs were received dynamically for all the perimeters of the regions. In short, the cartographer has between 15 and 20 photographs. The next step is to align the photographs in Zephyr photogrammetry software. Configuring resolutions, distance, camera locations, contrast, and brightness is essential. The final products are the 3D texture, 3D model, and orthophotos from Hallstatt and Ioannina. Digital products are suitable for measuring areas, circumferences, and heights. Furthermore, digital products represent a digital archiving practice: conservation and visualization are crucial factors today as they share, represent, promote, and document urban planning, historical memory, and the natural environment.
The current paper aims at spatial presentation in Cinque Terre. The purpose is to reconstruct digital products (maps, statistics, diagrams, and 3D models) and the spatial analysis of the five villages. The goals are the presentation of the geomorphology, geography, population, density, and area. Also, the Strength-Weakness-Opportunities-Threats (SWOT) analysis creates the disadvantages and advantages of the five villages in the region. The methodology is based on the software (G.I.S. Pro, QGIS, Zephyr 3D, Microsoft Excel, Generic Mapping Tool) and the bibliography study. For instance, the construction 3D terrain model shows the buildings, roads, green areas, and land cover of the five villages. The digital products help better “read” the region and emphasize the measurements and location of the region’s elements. The final results contain a message about new technologies and spatial planning. The new technologies have given spatial solutions in the last few years. The innovative, understanding, and attractive cartographical digital products present the geomorphology of the traditional villages in Cinque Terre.
Introduction: Chatbots are increasingly utilized in education, offering real-time, personalized communication. While research has explored technical aspects of chatbots, user experience remains under-investigated. This study examines a model for evaluating user experience and satisfaction with chatbots in higher education. Methodology: A four-factor model (information quality, system quality, chatbot experience, user satisfaction) was proposed based on prior research. An alternative two-factor model emerged through exploratory factor analysis, focusing on “Chatbot Response Quality” and “User Experience and Satisfaction with the Chatbot.” Surveys were distributed to students and faculty at a university in Ecuador to collect data. Confirmatory factor analysis validated both models. Results: The two-factor model explained a significantly greater proportion of the data’s variance (55.2%) compared to the four-factor model (46.4%). Conclusion: This study suggests that a simpler model focusing on chatbot response quality and user experience is more effective for evaluating chatbots in education. Future research can explore methods to optimize these factors and improve the learning experience for students.
This research introduces a novel framework integrating stochastic finite element analysis (FEA) with advanced circular statistical methods to optimize heat pump efficiency under material uncertainties. The proposed methodologies and optimization focus on balancing the mean efficiency and variability by adjusting the concentration parameter of the Von Mises distribution, which models directional variability in thermal conductivity. The study highlights the superiority of the Von Mises distribution in achieving more consistent and efficient thermal performance compared to the uniform distribution. We also conducted a sensitivity analysis of the parameters for further insights. The results show that optimal tuning of the concentration parameter can significantly reduce efficiency variability while maintaining a mean efficiency above the desired threshold. This demonstrates the importance of considering both stochastic effects and directional consistency in thermal systems, providing robust and reliable design strategies.
Copyright © by EnPress Publisher. All rights reserved.