The perspectives of economic students in Can Tho City, Vietnam were investigated in order to have a deeper understanding of the relationship between green supply chain management (GSCM) and social performance. A comprehensive survey was conducted on a sample size of 526 undergraduate students enrolled in business administration and international business courses. This study effort examined the impact of several subcomponents of GSCM on social performance. The inclusion of green production, green distribution, green supply chain management, and environmental education was seen. The coefficients of 0.24 and 0.115 suggest a favorable relationship between green procurement and internal environmental management and social performance. The existing scholarly literature presents several instances in which the implementation of Green Supply Chain Management (GSCM) has resulted in enhanced societal performance. The objective of this study is to contribute to the existing literature by investigating the many factors that influence the performance of Green Supply Chain Management (GSCM) in improving financial outcomes. The investigation also encompasses the examination of Green Supply Chain Management (GSCM) and its influence on societal performance. The authors propose that the extent to which graduates were exposed to GSCM education throughout their college years will have a substantial impact on their contributions to their respective fields and to society as a whole. Individuals who proactively pursue higher education by enrolling in college and focusing their studies on attaining a business degree are more likely to increase their chances of achieving success as entrepreneurs. Hence, these affluent proprietors of companies possess the potential to expand their operations and provide significant economic benefits at a macro level. In order to ensure the enduring viability of businesses, local communities, and the natural environment, educational institutions should provide curricula including corporate social responsibility, volunteerism, and ecologically conscious manufacturing methods. The integration of environmental stewardship with ethical business practices is crucial.
Purpose: This research examines the intricate interplay between Business Intelligence (BI), Big Data Analytics (BDA), and Artificial Intelligence (AI) within the realm of Supply Chain Management (SCM). While the integration of these technologies has promised improved operational efficiency and decision-making capabilities, concerns about complexities and potential overreliance on technology persist. The study aims to provide insights into achieving a balance between data-driven insights and qualitative factors in SCM for sustained competitiveness. Design/methodology/approach: The research executed interviews with ten Arab Gulf-based consulting firms. These companies’ ability to successfully complete BI projects is well recognised. Findings: Through examining the interplay of human judgement and data-driven strategies, addressing integration challenges, and understanding the risks of excessive data reliance, the research enhances comprehension of the modern SCM landscape. It underscores BI’s foundational role, the necessity of balanced human input, and the significance of customer-centric strategies for lasting competitive advantage and relationships. Practical implications: The research provided information for organizations seeking to effectively navigate the complexities of integrating data-driven technologies in SCM. The research is a foundation for future studies to delve deeper into quantitative measurement methodologies and effective data security strategies in the SCM context. Originality: The research highlights the value of integrating BI, BDA, and AI in SCM for improved efficiency, cost reduction, and customer satisfaction, emphasising the need for a balanced approach that combines data-driven insights, human judgement, and customer-centric strategies to maintain competitiveness.
Accurate demand forecasting is key for companies to optimize inventory management and satisfy customer demand efficiently. This paper aims to Investigate on the application of generative AI models in demand forecasting. Two models were used: Long Short-Term Memory (LSTM) networks and Variational Autoencoder (VAE), and results were compared to select the optimal model in terms of performance and forecasting accuracy. The difference of actual and predicted demand values also ascertain LSTM’s ability to identify latent features and basic trends in the data. Further, some of the research works were focused on computational efficiency and scalability of the proposed methods for providing the guidelines to the companies for the implementation of the complicated techniques in demand forecasting. Based on these results, LSTM networks have a promising application in enhancing the demand forecasting and consequently helpful for the decision-making process regarding inventory control and other resource allocation.
This study aims to investigate the relationship between internal and information integration within the supply chain (SCI-INTI and SCI-INFI), supply chain management (SCM) practices, and port operational performance (POP) in Oman’s container ports. Additionally, it explores the mediating role of SCM practices in the relationship between SCI-INTI, SCI-INFI, and POP in Oman. To meet the study’s objectives, a quantitative cross-sectional survey method was used. A total of 377 questionnaires were distributed to managers responsible for supply chain operations in the main departments at Sohar and Salalah ports, yielding 331 usable responses, with a response rate of 88 percent. The data collected were analyzed using partial least squares structural equation modeling (PLS-SEM). The results show that both internal and information integration within the supply chain have positive and statistically significant effects on the operational performance of Oman’s container ports (POP). Specifically, Supply Chain Integration with Internal Integration (SCI-INTI) significantly impacts POP (β = 0.249, t = 5.039, p < 0.001), and Supply Chain Integration with Information Integration (SCI-INFI) also significantly affects POP (β = 0.259, t = 4.966, p < 0.001). Additionally, SCI-INTI positively influences Supply Chain Management Practices (SCMP) (β = 0.381, t = 7.674, p < 0.001), as does SCI-INFI (β = 0.484, t = 9.878, p < 0.001). Furthermore, SCMP positively and significantly influences the operational performance of Oman’s container ports (β = 0.424, t = 7.643, p < 0.001). These findings contribute to the literature by emphasizing the significance of internal and information integration within the supply chain and SCM practices as strategic internal resources and capabilities that enhance operational performance in container ports. Understanding these elements enables decision-makers and policymakers within government port authorities and port operating companies to optimize internal resources and capabilities to improve port operational performance.
The operational performance of container ports is crucial for efficient logistics and trade. However, there is limited understanding of how external integration through Customer and Supplier Integration (SCI-CI and SCI-SI) impacts port operational performance (POP), particularly in emerging markets like Oman. This study addresses this gap by examining the relationship between SCI-CI, SCI-SI, and POP, and explores the mediating role of supply chain management (SCM) practices in this context. Using the Resource-Based View (RBV) as the theoretical framework, the study employed a quantitative cross-sectional survey method. A total of 377 questionnaires were distributed to managers at Sohar and Salalah ports, with 331 usable responses obtained, representing an 88 percent response rate. The data were analyzed using Partial Least Squares Structural Equation Modeling (PLS-SEM). The results indicate that SCI-CI and SCI-SI have significant direct and indirect positive effects on POP, and they directly influence SCM practices. SCM practices, in turn, significantly enhance POP. Notably, SCM practices partially mediate the relationship between SCI-CI and SCI-SI with POP. These findings underscore the strategic importance of external integration and SCM practices as internal resources for improving port performance. This research provides valuable insights for decision-makers and policymakers in optimizing port operations.
Copyright © by EnPress Publisher. All rights reserved.