Embassies are important buildings, involving the diplomatic image of a country’s government in another foreign country. Given the rising tensions between countries, either political, economic, religion or war, attacks on embassies have been increasing in recent years. Thus, it is evident that appropriate measures are to be taken to reduce the potential impact of an attack. The paper discusses the measures in enhancing building security of embassies. The principles for Security Planning and Design are discussed, followed by an introduction to a systematic security risk assessment framework. The framework is evaluated regarding the potential security risk posed by an attack against elements of the mega infrastructure using explosives. Further options to increase the security of embassies are also explored to reduce the risk of a potential attack. A security-enhanced building, planned and constructed well to specifications, can provide benefits to the client, including greater cost advantage and increase of value for the structure.
Taking the west slope of Cangshan Mountain in Yangbi County, Dali as the research site, on the basis of investigating the local natural geographical conditions, topography and biodiversity status of Cangshan Mountain, the CAP protection action planning method was adopted, and the priority protection objects were determined to be native forest vegetation, rare and endangered flora and fauna, alpine vertical ecosystems, hard-leaf evergreen broad-leaved forests and cold-tempered coniferous forests; The main threat factors were commercial collection, tourism development and overgrazing. Biodiversity conservation on the western slope of Cangshan Mountain should take species as “point”, regional boundary as “line”, ecosystem and landscape system as “plane”, so as to realize the overall planning structure system combining “point—line—plane”, which can be divided into conservation core area, buffer zone and experimental area. The results can provide a reference for biodiversity conservation on the western slope of Cangshan Mountain.
A method for studying the resilience of energy and socio-ecological systems is considered; it integrates approaches developed at the International Institute of Applied Systems Analysis and the Melentyev Institute of Energy Systems (MESI) of the Siberian Branch of the Russian Academy of Sciences. The article discusses in detail the methods of using intelligent information technologies, in particular semantic technologies and knowledge engineering (cognitive probabilistic modeling), which the authors propose to use in assessing the risks of natural and man-made threats to the resilience of the energy sector and social and ecological systems. More attention is paid to the study and adaptation of the integral indicator of quality of life, which makes it possible to combine these interdisciplinary studies.
The ability to take advantage of new digital solutions and technology will give companies a competitive edge, and operational optimization remains a major concern. A significant area of risk is cyber security because software-based technologies are integral to ship operations. Particular emphasis has been placed on the vulnerabilities of the Global Navigation Satellite System (GNSS), since it is an essential part of many maritime facilities and hence a target for hackers. Presently, research has shown that increased integration of new enabling technologies, like the Internet of Things (IoT) and big data, is driving the dramatic proliferation of cybercrimes. However, most of the attacks are related to ransomware attacks and/or with direct attack to the information technology (IT) and infrastructure. Nevertheless, there is a strong trend toward increased systems integration, which will produce substantial business value by making it easier to operate autonomous vessels, utilizing smart ports more, reducing the need for labour, and improving economic stability and service efficiency. Cybersecurity is becoming more and more important as a result of the quick digital transformation of the offshore and maritime sectors, which has also brought new dangers and laws. The marine sector has started to take cybersecurity seriously in light of the multiple documented instances of cyberattacks that have exposed business or personal data, caused large financial losses, and caused other problems. However, the body of existing research on emerging threats in maritime cyberspace is either inadequate or ignores important variables. Based on the most recent developments in the maritime sector, the article presents a classification of the most serious cyberthreats as well as the risks to cybersecurity in maritime operations and possible mitigation strategies from an educational research perspective.
Copyright © by EnPress Publisher. All rights reserved.