In rural areas, land use activities around primary arterial roads influence the road section’s traffic characteristics. Regulations dictate the design of primary arterial roads to accommodate high speeds. Hence, there is a mix of traffic between high-speed vehicles and vulnerable road users (pedestrians, bicycles, and motorcycles) around the land. As a result, researchers have identified several arterial roads in Indonesia as accident-prone areas. Therefore, to improve the road user’s safety on primary arterial roads, it is necessary to develop models of the influence of various factors on road traffic accidents. This research uses binary logistic regression analysis. The independent variables are carelessness, disorderliness, high speed, horizontal alignment, road width, clear zone, road shoulder width, signs, markings, and land use. Meanwhile, the dependent variable is the frequency of accidents, where the frequency of accidents consists of multi-accident vehicles (MAV) and single-accident vehicles (SAV). This study collects data for a traffic accident prediction model based on collision frequency in accident-prone areas. The results, road shoulder width, and road sign factor all have an impact on the frequency of traffic accidents. According to a realistic risk analysis, MAV and SAV have no risk difference. After validation, this model shows a confidence level of 92%. This demonstrates that the model generates estimations that accurately reflect reality and are applicable to a wider population. This research has the potential to assist engineers in improving road safety on primary arterial roads. In addition, the model can help the government measure the impact of implemented policies and engage the public in traffic accident prevention efforts.
Rising fuel prices can affect driver behavior and thus the number of accidents, which is a key road safety issue. The aim of this paper was to assess and quantify the relationship between fuel prices (FP) and the number of road accidents in Europe. Content analysis of statistics from the countries was used to collect data, which were examined using Ramsey resets and Poisson distributions and then processed using negative binomial regression (NB), cluster analysis and visualization using contour plots. The results show that in Germany and Poland there is a statistically significant low negative correlation between fuel price and the number of traffic accidents, while in the Czech Republic and Denmark the relationship is weaker and statistically insignificant. In Iceland, no significant correlation was found. The contribution of this paper is to provide important insights that can be used in the development of transport policies and regulations to improve road safety. The main limitations include the difficulty of data collection, as many countries do not publish detailed statistics, and the low number of accidents in Iceland, which makes it impossible to perform a robust analysis for this country and may cause generalization of the results.
Copyright © by EnPress Publisher. All rights reserved.