Historically, transportation projects and urban mobility policies overlook the dimension of social sustainability, mainly focusing on economic and environmental criteria. This neglect, seen enhanced in the Global South, leads to long travel times, growing congestion, reliance on motorcycles, high traffic accident rates, and limited access to public transport, jobs, and urban facilities, especially for the more vulnerable population. In light of these issues, this paper proposes the Social Sustainability of Urban Mobility (SSUM) approach as an analytical framework that assesses the state of social sustainability in urban mobility by applying a Systematic Literature Review where three gaps were found. First, by tailoring the SSUM approach to the context of the Global South, it is possible to address the population-focused gap in urban mobility. Second, in the literature review, a theoretical gap defining social sustainability in urban mobility and its three primary categories has yet to reach a consensus among practitioners and academics. Finally, more empirical research should be conducted to discuss methodological aspects of operationalizing the SSUM approach through the three main categories: accessibility, the sustainability of the community, and institutionality. The SSUM approach promotes implementing a sustainable urban agenda that builds inclusive, equitable, and just cities in urban mobility.
In developing countries, urban mobility is a significant challenge due to convergence of population growth and the economic attraction of urban centers. This convergence of factors has resulted in an increase in the demand for transport services, affecting existing infrastructure and requiring the development of sustainable mobility solutions. In order to tackle this challenge, it is necessary to create optimal services that promote sustainable urban mobility. The main objective of this research is to develop and validate a comprehensive methodology framework for assessing and selecting the most sustainable and environmentally responsible urban mobility services for decision makers in developing countries. By integrating fuzzy multi-criteria decision-making techniques, the study aims to address the inherent complexity and uncertainty of urban mobility planning and provide a robust tool for optimizing transportation solutions for rapid urbanization. The proposed methodology combines three-dimensional fuzzy methods of type-1, including AHP, TOPSIS and PROMETHEE, using the Borda method to adapt subjectivity, uncertainty, and incomplete judgments. The results show the advantages of using integrated methods in the sustainable selection of urban mobility systems. A sensitivity analysis is also performed to validate the robustness of the model and to provide insights into the reliability and stability of the evaluation model. This study contributes to inform decision-making, improves policies and urban mobility infrastructure, promotes sustainable decisions, and meets the specific needs of developing countries.
The paper proposes a methodology for the analysis and evaluation of the traffic scheme of Bulgarian cities. The authors combine spatial, network, and socio-economic analyses of cities with transport operators’ financial-economic evaluation, sociological studies of transport habits, and the possibilities of new information technologies for transport modeling (such as geographic information systems). The model proposes several approaches to optimize the municipality’s transport scheme. It results from a new need to improve urban traffic, the quality of transport services, and the integration of urban transport into the regional economy of Stara Zagora municipality. It presents a description, analysis, and outline of the opportunities for developing urban transport connectivity and mobility in Stara Zagora municipality. The research results show a deficit of transport connectivity between the different parts of the city, reflecting on the regional economy’s development and the efficiency of the environment and the population.
Cyber-physical Systems (CPS) have revolutionized urban transportation worldwide, but their implementation in developing countries faces significant challenges, including infrastructure modernization, resource constraints, and varying internet accessibility. This paper proposes a methodological framework for optimizing the implementation of Cyber-Physical Urban Mobility Systems (CPUMS) tailored to improve the quality of life in developing countries. Central to this framework is the Dependency Structure Matrix (DSM) approach, augmented with advanced artificial intelligence techniques. The DSM facilitates the visualization and integration of CPUMS components, while statistical and multivariate analysis tool such as Principal Component Analysis (PCA) and artificial intelligence methods such as K-means clustering enhance complex system the analysis and optimization of complex system decisions. These techniques enable engineers and urban planners to design modular and integrated CPUMS components that are crucial for efficient, and sustainable urban mobility solutions. The interdisciplinary approach addresses local challenges and streamlines the design process, fostering economic development and technological innovation. Using DSM and advanced artificial intelligence, this research aims to optimize CPS-based urban mobility solutions, by identifying critical outliers for targeted management and system optimization.
Copyright © by EnPress Publisher. All rights reserved.