The effective allocation of resources within police patrol departments is crucial for maintaining public safety and operational efficiency. Traditional methods often fail to account for uncertainties and variabilities in police operations, such as fluctuating crime rates and dynamic response requirements. This study introduces a fuzzy multi-state network (FMSN) model to evaluate the reliability of resource allocation in police patrol departments. The model captures the complexities and uncertainties of patrol operations using fuzzy logic, providing a nuanced assessment of system reliability. Virtual data were generated to simulate various patrol scenarios. The model’s performance was analyzed under different configurations and parameter settings. Results show that resource sharing and redundancy significantly enhance system reliability. Sensitivity analysis highlights critical factors affecting reliability, offering valuable insights for optimizing resource management strategies in police organizations. This research provides a robust framework for improving the effectiveness and efficiency of police patrol operations under conditions of uncertainty.
Catastrophes, like earthquakes, bring sudden and severe damage, causing fatalities, injuries, and property loss. This often triggers a rapid increase in insurance claims. These claims can encompass various types, such as life insurance claims for deaths, health insurance claims for injuries, and general insurance claims for property damage. For insurers offering multiple types of coverage, this surge in claims can pose a risk of financial losses or bankruptcy. One option for insurers is to transfer some of these risks to reinsurance companies. Reinsurance companies will assess the potential losses due to a catastrophe event, then issue catastrophe reinsurance contracts to insurance companies. This study aims to construct a valuation model for catastrophe reinsurance contracts that can cover claim losses arising from two types of insurance products. Valuation in this study is done using the Fundamental Theorem of Asset Pricing, which is the expected present value of the number of claims that occur during the reinsurance coverage period. The number of catastrophe events during the reinsurance coverage period is assumed to follow a Poisson process. Each impact of a catastrophe event, such as the number of fatalities and injuries that cause claims, is represented as random variables, and modeled using Peaks Over Threshold (POT). This study uses Clayton, Gumbel, and Frank copulas to describe various dependence characteristics between random variables. The parameters of the POT model and copula are estimated using Inference Functions for Margins method. After estimating the model parameters, Monte Carlo simulations are performed to obtain numerical solutions for the expected value of catastrophe reinsurance based on the Fundamental Theorem of Asset Pricing. The expected reinsurance value based on Monte Carlo simulations using Indonesian earthquake data from 1979–2021 is Rp 10,296,819,838.
With the popularity of smartphones, consumers’ daily lives and consumption patterns have been changed by using multi-functional apps. Convenience store operators have developed membership apps as a platform to promote their brands to consumers to create the benefits of “membership economy”. This study examined consumer behavior towards convenience store membership apps using UTAUT2. Consumers who have installed the convenience store membership apps were recruited as the target population. SPSS 23.0 was used to conduct item analysis and reliability analysis in the pretest questionnaires. The formal questionnaires were distributed online by convenience sampling method, with 375 valid questionnaires collected. Smart PLS 3.0 was conducted by analyzing the confirmatory factor analysis and structural equation model analysis. The results of the study, “performance expectancy”, “social influence”, “price value” and “habit” of convenience store member app users showed positive and significant effects on “behavioral intention”. “Facilitating conditions”, “habit” and “behavioral intention” have positive and significant effects on “actual use behavior”. “Gender” affects “habit” to have a significant moderating effect on “use behavior”. “Use experience” affects “habit” to have a significant moderating effect on “behavioral intention”. Based on the study results, the further suggestions of marketing management implications and feasible recommendations are proposed for convenience store operators to refer to in the implementation of membership app marketing management.
Considering the role of tourism in promoting sustainable practices in destinations, this study aims to map the scientific literature on footprint calculators in the last three years (2020–2023) with a focus on the tourism context. The method adopted is a scoping review with a qualitative and exploratory approach, using the Scopus database. The originality of this research lies in the study of publications related to footprint calculators with a focus on the tourism sector. Based on the analysis carried out, the main results show that the study of footprint calculators applied to the tourism sector has had little prominence in the indexed research in the Scopus database during the specific period considered for this study. Consequently, the conclusion of the study highlights the marginality of the tourism sector in the discussion of footprint calculators in the last 3 years of scientific publications.
In the dynamic landscape of modern education, it is essential to understand and recognize the psychological habits that underpin students’ learning processes. These habits play a crucial role in shaping students’ learning outcomes, motivation, and overall educational experiences. This paper shifts the focus towards a more nuanced exploration of these psychological habits in learning, particularly among secondary school students. We propose an innovative assessment model that integrates multimodal data analysis with the quality function deployment theory and the subjective-objective assignment method. This model employs the G-1-entropy value method for an objective evaluation of students’ psychological learning habits. The G-1-entropy method stands out for its comprehensive, objective, and practical approach, offering valuable insights into students’ learning behaviors. By applying this method to assess the psychological aspects of learning, this study contributes to educational research and informs educational reforms. It provides a robust framework for understanding students’ learning habits, thereby aiding in the development of targeted educational strategies. The findings of this study offer strategic directions for educational management, teacher training, and curriculum development. This research not only advances theoretical knowledge in the field of educational psychology but also has practical implications for enhancing the quality of education. It serves as a scientific foundation for educators, administrators, and policymakers in shaping effective educational practices.
Although various actors have examined the user acceptance of e-government developments, less attention has so far devoted to the relationship between attitudes of certain commuter groups against digital technologies and their intention to engage in productive time-use by mobile devices. This paper aims to fill this gap by establishing an overall framework which focuses on Hungarian commuters’ attitudes toward e-government applications as well as their possible demands of developing them. Relying on a representative questionnaire survey conducted in Hungary in March and April 2020, the data were examined by a machine learning and correlations to identify the factors, attitudes and demands that influence the use of mobile devices during frequent commuting. The paper argues that the regularity of commuting in rural areas, as well as the higher levels of qualification and employment status in cities show a more positive, technophile attitude to new ICT and mobile technologies that strengthen the demands for digital development, with special regard to optimising e-government applications for certain types of commuting groups. One of the main limitations of this study is that results suggest a picture of the commuters in a narrow timeframe. The findings suggest that developing e-government applications is necessary and desirable from both of the supply and demand sides. Based on prior scholarly knowledge, no research has ever analysed these correlations in Hungary where commuters are among the European citizens who spend extensive time with commuting.
Copyright © by EnPress Publisher. All rights reserved.