This research investigates the safety status of water transport in Lake Towuti, South Sulawesi, employing the MICMAC and MACTOR methodologies to discern the factors that affect navigation safety and the interactions among the relevant stakeholders. The MICMAC analysis reveals that the effectiveness of sustainable transportation in Lake Towuti is significantly dependent on technical elements such as vessel certification, maintenance practices, and safety monitoring, alongside robust relationships among key entities like The South Sulawesi Class II Land Transportation Management Center (BPTD), The East Luwu District Transportation Office (Dishub), and the Timampu Port Service Unit (Satpel). When implementing the MICMAC-MACTOR model, it is essential to consider the technical implications of the proposed recommendations from the perspectives of social justice, environmental sustainability, and economic feasibility. The outcomes derived from the MICMAC and MACTOR assessments in Lake Towuti provide critical insights that can be utilized in other lakes across Indonesia, especially those that exhibit deficiencies in safety measures and adherence to inland water transport safety regulations.
An exhaustive analysis and evaluation of fertility indicators in a society including many ethnic groups might provide valuable insights into any discrepancies. This study aims to systematically analyse the fertility rates over specific periods and investigate the differences in levels and patterns between local and expatriate women in Saudi Arabia using the existing data. This analysis used data from credible sources published by the General Authority for Statistics in the Saudi census 2022. The calculation of period fertility indicators started with the most straightforward rates and advanced to more complex ones, followed by a comprehensive description of the advantages and disadvantages of each. The aim was to ascertain fluctuations in fertility rates and analyse temporal patterns. Multiple studies consistently show that the fertility rate among expats in Saudi Arabia is lower than that among Saudi native women. However, the reason for this discrepancy still needs to be discovered since the definitive effect of contraceptive techniques has yet to be confirmed. Moreover, the reproductive trends that have occurred since the early 1980s will persist, although with additional precautions in place.
Hazards are the primary cause of occupational accidents, as well as occupational safety and health issues. Therefore, identifying potential hazards is critical to reducing the consequences of accidents. Risk assessment is a widely employed hazard analysis method that mitigates and monitors potential hazards in our everyday lives and occupational environments. Risk assessment and hazard analysis are observing, collecting data, and generating a written report. During this process, safety engineers manually and periodically control, identify, and assess potential hazards and risks. Utilizing a mobile application as a tool might significantly decrease the time and paperwork involved in this process. This paper explains the sequential processes involved in developing a mobile application designed for hazard analysis for safety engineers. This study comprehensively discusses creating and integrating mobile application features for hazard analysis, adhering to the Unified Modeling Language (UML) approach. The mobile application was developed by implementing a 10-step approach. Safety engineers from the region were interviewed to extract the knowledge and opinions of experts regarding the application’s effectiveness, requirements, and features. These interview results are used during the requirement gathering phase of the mobile application design and development. Data collection was facilitated by utilizing voice notes, photos, and videos, enabling users to engage in a more convenient alternative to manual note-taking with this mobile application. The mobile application will automatically generate a report once the safety engineer completes the risk assessment.
Assessment of water resources carrying capacity (WRCC) is of great significance for understanding the status of regional water resources, promoting the coordinated development of water resources with environmental, social and economic development, and promoting sustainable development. This study focuses on the Longdong Loess Plateau region and utilized panel data spanning from 2010 to 2020, established a three-dimensional evaluation index system encompassing water resources, economic, and ecological dimensions, uses the entropy-weighted TOPSIS model coupled with global spatial autocorrelation analysis (Global Moran’s I) and the hot spot analysis (Getis-Ord Gi* index) method to comprehensively evaluate the spatial distribution of the WRCC in the study region. It can provide scientific basis and theoretical support for decision-making on sustainable development strategies in the Longdong Loess Plateau region and other regions of the world.From 2010 to 2020, the overall WRCC of the Longdong Loess Plateau area show some fluctuations but maintained overall growth. The WRCC in each county and district predominantly fell within level III (normal) and level IV (good). The spatial distribution of the WRCC in each county and district is featured by clustering pattern, with neighboring counties displaying similar values, resulting in a spatial distribution pattern characterized by high carrying capacity in the south and low carrying capacity in the north. Based on these findings, our study puts forth several recommendations for enhancing the WRCC in the Longdong Loess Plateau area.
Uncontrolled economic development often leads to land degradation, a decline in ecosystem services, and negative impacts on community welfare. This study employs water yield (WY) modeling as a method for environmental management, aiming to provide a comprehensive understanding of the relationship between Land Use Land Cover (LULC), Land Use Intensity (LUI), and WY to support sustainable natural resource management in the Cisadane Watershed, Indonesia. The objectives include: (1) analyzing changes in WY for 2010, 2015, and 2021; (2) predicting WY for 2030 and 2050 under two scenarios—Business as Usual (BAU) and Protected Forest Area (PFA); (3) assessing the impacts of LULC and climate change on WY; and (4) exploring the relationship between LUI and WY. The Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model calculates actual and predicted WY conditions, while the Coupling Coordination Degree (CCD) analyzes the LULC-WY relationship. Results indicate that the annual WY in 2021 was 215.8 × 108 m³, reflecting a 30.42% increase from 2010. Predictions show an increasing trend in WY under both scenarios for 2030 and 2050 with different magnitudes. Rainfall contributes 88.99% more dominantly to WY than LULC. Additionally, around 50% of districts exhibited unbalanced coordination between LUI and WY in 2010 and 2020. This study reveals the importance of ESs in sustainable watershed management amidst increasing demand for natural resources due to population growth.
Copyright © by EnPress Publisher. All rights reserved.