To deal with problems of traditional geographic information collection, such as low real-time, poor authenticity of the data, and unclear description of detailed areas, a design scheme of remote sensing-based geographic information system is proposed. The system mainly consists of information collection, imaging processing, data storage management, scene control and data transmission module. By use of remote sensing technology, the reflected and radiated electromagnetic waves of the target area are collected from a long distance to form an image, and the hue–intensity–saturation (HIS) transformation method is used to enhance the image definition. Weighted fusion algorithm is adopted to process the details of the image. The spatial database stores and manages the text and image data respectively, and establishes the attribute self-correlation mechanism to render the ground objects in the picture with SketchUp software. Finally, using RS422 protocol to transmit information can achieve the effect of multi-purpose, and enhance the anti-interference of the system. The experimental results show that the practical experience of the proposed system is excellent, the geographic information image presented is clear, and the edge details are clearly visible, which can provide users with effective geographic information data.
Nanoparticle drug delivery systems are engineered technologies that use nanoparticles for the targeted delivery and controlled release of therapeutic agents. Cisplatin-loaded nanoparticle formulations were optimized utilizing response surface methods and the central composite rotating design model. This study employed a central composite rotatable design with a three-factored factorial design with three tiers. Three independent variables namely drug polymer ratio, aqueous organic phase ration, and stabilizer concentration were used to examine the particle size, entrapment efficiency, and drug loading of cisplatin PLGA nanoparticles as responses. The results revealed that this response surface approach might be able to be used to find the best formulation for the cisplatin PLGA nanoparticles. A polymer ratio of 1:8.27, organic phase ratio of 1:6, and stabilizer concentration of 0.15 were found to be optimum for cisplatin PLGA nanoparticles. Nanoparticles made under the optimal conditions found yielded a 112 nm particle size and a 95.4 percent entrapment efficiency, as well as a drug loading of 9 percent. The cisplatin PLGA nanoparticles tailored for scanning electon microscopy displayed a spherical form. A series of in vitro tests showed that the nanoparticle delivered cisplatin progressively over time. According to this work, the Response Surface Methodology (RSM) employing the central composite rotatable design may be successfully used to simulate cisplatin-PLGA nanoparticles.
The direct expansion heat pump with solar energy is an energy conversion system used for water heating applications, air heating for air conditioning buildings, water desalination, solar drying, among others. This paper reviews the main designs and analysis of experiments in order to identify the fundamental objectives of any experiment which may be: to determine the factors that have a significant influence, to obtain a mathematical model and/or to optimize performance. To achieve this task, the basic and advanced configuration of this system is described in detail in order to characterize its thermal performance by means of energy analysis and/or exergy-based analysis. This review identifies possible lines of research in the area of design and analysis of experiments to develop this water heating technology for industrial applications.
Heat removal has become an increasingly crucial issue for microelectronic chips due to increasingly high speed and high performance. One solution is to increase the thermal conductivity of the corresponding dielectrics. However, traditional approach to adding solid heat conductive nanoparticles to polymer dielectrics led to a significant weight increase. Here we propose a dielectric polymer filled with heat conductive hollow nanoparticles to mitigate the weight gain. Our mesoscale simulation of heat conduction through this dielectric polymer composite microstructure using the phase-field spectral iterative perturbation method demonstrates the simultaneous achievement of enhanced effective thermal conductivity and the low density. It is shown that additional heat conductivity enhancement can be achieved by wrapping the hollow nanoparticles with graphene layers. The underlying mesoscale mechanism of such a microstructure design and the quantitative effect of interfacial thermal resistance will be discussed. This work is expected to stimulate future efforts to develop light-weight thermal conductive polymer nanocomposites.
The global Testing, Inspection, and Certification (TIC) service market is experiencing significant growth, driven by rising demand for high-quality and safety-related TIC services across various industries. This research aims to redesign a position map and strategy for Indonesian TIC State-Owned Enterprises (SOEs) in the Red Ocean competition. This systematic literature review analyzed 17 journals. The results show that the Indonesian TIC SOEs are intensively competing in the Red Ocean competition. In designing the position map in the Red Ocean competition, the SOEs must use technology in their operational activities to implement good corporate governance, collaborative strategies, resource management, and leadership styles aligned with the organizational culture.
This research delves into the correlation between institutional quality and tourism development in a panel of nine Mediterranean countries within the European Union spanning from 1996 to 2021. The study gauges tourism development by examining tourist arrivals, while considering GDP growth rate, inflation, higher education, environmental quality, and trade as control variables representing factors influencing tourism. Institutional quality is measured through indicators such as regulatory quality, rule of law, and control of corruption. Utilizing Fully Modified Ordinary Least Square (FMOLS) and Dynamic Ordinary Least Squares (DOLS) models, the study aims to quantify the impact of these factors on tourism development. The findings indicate a positive relationship between institutional quality and tourism, shedding light on the pivotal role of institutions in tourism management and their influence on the sector. These results have implications for shaping national development strategies.
Copyright © by EnPress Publisher. All rights reserved.