The holding of soccer events has an important impact on modern urban activities, which is conducive to the economic development, social harmony, cultural integration and regional integration of cities. However, massive energy is consumed during the event preparation and infrastructure construction, resulting in an increase in the city’s carbon emissions. For the sustainable development of cities, it is important to explore the theoretical mechanism and practical effectiveness of the relationship between soccer events and urban carbon emissions, and to adopt appropriate policy management measures to control carbon emissions of soccer events. With the development of green technology, digitalization, and public transportation, the preparation and management methods of soccer events are diversified, and the possibility of carbon reduction of the event is further increased. This paper selects 17 cities in China from 2011 to 2019 and explores the complex impact of soccer events on urban carbon emissions by using green technology innovation, digitalization level and public transportation as threshold variables. The results show that: (1) Hosting soccer events increases carbon emissions with an impact coefficient of 0.021; (2) There is a negative single-threshold effect of green innovation technology, digitalization level and public transportation on the impact of soccer events on carbon emissions, with the impact coefficients of soccer events decreasing by 0.008, 0.01 and 0.06, respectively, when the threshold variable crosses the threshold. These findings will enhance the attention of city managers to the management of carbon emissions from soccer events and provide guidance for reducing carbon emissions from soccer events through green technology innovation, digital means and optimization of public transportation.
Heavy metal contaminated soil due to industrial, agricultural and municipal activities is becoming a global concern. Heavy metals severely affect plants, animals and human health. A suitable technology is necessary for heavy metals removal because it cannot self-decomposition as organic compounds. Among the various technologies surveyed, phytoremediation is one of the safest, most innovative, environmental friendly and cost-effective approach for heavy metals removal. Nevertheless, traditional phytoremediation practices pose some limitations such as long processing time, unstable treatment efficiency and limited application at large scale. In many methods proposed to improve phytoremediation, integrated phytoremediation has been studied in the recent years. Integrated phytoremediation use chelating agents and phytohormones to enhance phytoremediation. This is an environmentally safe, saving time and relative high effective method. Results showed that the association of a metal ion and a chelating agent to form chelates helps to maintain the availability of metals in the soil for the uptake of plants. Phytohormones supply nutrients for the soil to support vegetable growth. Therefore, integrated phytoremediation is a promising solution to overcome the disadvantages of conventional phytoremediation. It should be taken commercialization and need more applied projects in this field to demonstrate and clarify the real potential of this technology. In view of above, this manuscript reviews the mechanism and the efficiency of integrated phytoremediation for heavy metals in contaminated soil to give an overview of this technology.
Continuous usage is crucial for ensuring the longevity of technological advancements. The success of e-government is contingent upon its ongoing use, rather than its initial acceptance. Nevertheless, there has been a dearth of scholarly research on the ongoing use of e-government services. The objective of this study was to identify the primary factors that influences the continued use of e-government services in Indonesia. The research model was created by integrating both Expectation Confirmation Model and Technology Acceptance Model, two theories that are frequently employed in the adoption of technology. The data was obtained by administering an online survey to 217 Indonesian citizens who had previously utilized the Online Citizen Aspiration and Complaints Service (LAPOR) e-Government services. The results indicate that perceived ease of use had a substantial impact on citizen satisfaction and perceived usefulness. In contrast to previous research conducted in the context of e-Government, it was found that perceived usefulness did not have a significant correlation with the intention to continue using the system. The most significant predictor of continued intention to use was citizen satisfaction. Surprisingly, satisfaction was more significantly influenced by perceived ease of use than perceived usefulness. The implications of these findings are elaborated upon.
Water pollution has become a serious threat to our ecosystem. Water contamination due to human, commercial, and industrial activities has negatively affected the whole world. Owing to the global demanding challenges of water pollution treatments and achieving sustainability, membrane technology has gained increasing research attention. Although numerous membrane materials have focused, the sustainable water purification membranes are most effective for environmental needs. In this regard sustainable, green, and recyclable polymeric and nanocomposite membranes have been developed. Materials fulfilling sustainable environmental demands usually include wide-ranging polyesters, polyamides, polysulfones, and recyclable/biodegradable petroleum polymers plus non-toxic solvents. Consequently, water purification membranes for nanofiltration, microfiltration, reverse osmosis, ultrafiltration, and related filtration processes have been designed. Sustainable polymer membranes for water purification have been manufactured using facile techniques. The resulting membranes have been tested for desalination, dye removal, ion separation, and antibacterial processes for wastewater. Environmental sustainability studies have also pointed towards desired life cycle assessment results for these water purification membranes. Recycling of water treatment membranes have been performed by three major processes mechanical recycling, chemical recycling, or thermal recycling. Moreover, use of sustainable membranes has caused positive environmental impacts for safe waste water treatment. Importantly, worth of sustainable water purification membranes has been analyzed for the environmentally friendly water purification applications. There is vast scope of developing and investigating water purification membranes using countless sustainable polymers, materials, and nanomaterials. Hence, value of sustainable membranes has been analyzed to meet the global demands and challenges to attain future clean water and ecosystem.
Blockchain technology has increasingly attracted the attention of the financial service sector, customers, and investors because of its distinctive characteristics, such as transparency, security, reliability, and traceability. The paper is based on a Systematic Literature Review (SLR). The study comprehended the literature and the theories. It deployed the technology-organization-environment (TOE) model to consider technological, organizational, and environmental factors as antecedents of blockchain adoption intention. The paper contributes to blockchain literature by providing new insights into the factors that affect the intention to adopt blockchain technology. A theoretical model incorporates antecedents of blockchain adoption intention to direct an agenda for further investigations. Researchers can use the model proposed in this study to test the antecedents of blockchain adoption intention empirically.
Copyright © by EnPress Publisher. All rights reserved.