In response to the increasing global emphasis on sustainability and the specific challenges faced by small and medium-sized enterprises (SMEs) in China, this study explores the integration of green reverse logistics within these enterprises to enhance their sustainability and competitiveness. The aim of this study is to understand the relationship between reverse logistics, green logistics, and sustainable development. Data analysis was conducted utilizing a combination of descriptive statistics and correlation analysis. A survey of 311 participants examined SMEs’ performance in reverse logistics practices and their initiatives in green logistics and sustainable development. The empirical findings reveal significant progress in reverse logistics practices among SMEs, reducing environmental impact and improving resource efficiency. Moreover, a notable positive correlation was identified between reverse logistics promotion and advancements in green logistics and sustainable development. SMEs’ investment in reverse logistics is closely linked to their efforts in environmentally conscious and sustainable supply chain management. These insights benefit SMEs and supply chain practitioners and offer a valuable reference for future research and practical applications in this field.
This study examined socio-economic factors affecting Micro, Small, and Medium Enterprises (MSME) e-commerce adoption, focusing on gender, income, and education. Using the 2022 National Socio-Economic Survey (Susenas) data, a logistic regression model was employed to analyze key determinants of e-commerce utilization. Additionally, an online survey of 550 MSMEs across 29 provinces was conducted to assess the impact of digitalization on business performance. In comparison, an offline study of 42 MSMEs with low digital adoption provided insights into the barriers hindering digital transformation. A natural experiment was conducted to evaluate the effectiveness of behavioral interventions in promoting the adoption of e-payments and e-commerce. The main contribution of this study lies in integrating large-scale national survey data with experimental approaches to provide a deeper understanding of digital adoption among MSMEs. Unlike previous studies focusing solely on socio-economic determinants, this research incorporated a digital nudging experiment to examine how targeted incentives influenced e-commerce participation. The findings revealed that digital transformation significantly enhanced MSME performance, particularly in turnover, product volume, customer base, and worker productivity. Socio-economic factors such as gender, household head status, and social media access significantly influenced digital adoption decisions. Behavioral nudging proved effective in increasing MSME participation in e-commerce. Although this study was limited to Susenas 2022 data and survey responses, it bridges a critical research gap by linking socio-economic factors with behavioral interventions in MSME digitalization. The findings offer key insights for policymakers in formulating evidence-based strategies to drive MSME digital transformation and e-commerce growth in Indonesia.
Kampar Regency, as the largest pineapple producer in Riau Province, has yet to provide significant added value for the surrounding SMEs. The limitations in technology and innovation, infrastructure support, and market access have prevented this potential from being optimally utilized. A Technopark can provide the necessary facilities and infrastructure to enhance production efficiency, innovation, and product quality, thus driving local economic growth. The objective of this study is to identify and determine potential locations for the development of a pineapple-based Technopark in Kampar Regency. This study is crucial as a fundamental consideration in selecting the technopark location and assessing the effectiveness and success of the technopark area. The method used in this study is AHP-GIS to analyze relevant parameters in the site selection process for the technopark area. Parameters considered in this study include slope, land use, availability of raw materials, accessibility of roads, access to water resources, proximity to universities, market access, population density, and landfill. The analysis results indicate that the percentage of land highly suitable for the technopark location is 0.78%, covering an area of 8943 hectares. Based on the analysis, it is recommended that potential locations for the development of a pineapple SMEs-based technopark in Kampar Regency are dispersed in Tambang District, encompassing three villages: Rimbo Panjang, Kualu Nenas and Tarai Bangun. The findings of this study align with the spatial planning of Kampar Regency.
In rural areas, land use activities around primary arterial roads influence the road section’s traffic characteristics. Regulations dictate the design of primary arterial roads to accommodate high speeds. Hence, there is a mix of traffic between high-speed vehicles and vulnerable road users (pedestrians, bicycles, and motorcycles) around the land. As a result, researchers have identified several arterial roads in Indonesia as accident-prone areas. Therefore, to improve the road user’s safety on primary arterial roads, it is necessary to develop models of the influence of various factors on road traffic accidents. This research uses binary logistic regression analysis. The independent variables are carelessness, disorderliness, high speed, horizontal alignment, road width, clear zone, road shoulder width, signs, markings, and land use. Meanwhile, the dependent variable is the frequency of accidents, where the frequency of accidents consists of multi-accident vehicles (MAV) and single-accident vehicles (SAV). This study collects data for a traffic accident prediction model based on collision frequency in accident-prone areas. The results, road shoulder width, and road sign factor all have an impact on the frequency of traffic accidents. According to a realistic risk analysis, MAV and SAV have no risk difference. After validation, this model shows a confidence level of 92%. This demonstrates that the model generates estimations that accurately reflect reality and are applicable to a wider population. This research has the potential to assist engineers in improving road safety on primary arterial roads. In addition, the model can help the government measure the impact of implemented policies and engage the public in traffic accident prevention efforts.
Industrial zones require careful and meticulous planning because industry can have a major impact on the surrounding environment. The research location is the northern part of West Java Province which is a gold triangle area named Rebana Triangle Area. The purpose of this study is to measure the weight of the research variables in determining industrial zones from the results of fuzzy analytical hierarchy process (F-AHP) analysis, assessing the location of industrial zones in the research area based on important variables in determining industrial zones. The result of this study is the weight of the research variables in determining the industrial zone from the results of the fuzzy analytical hierarchy process (F-AHP) analysis obtained is the availability of electrical infrastructure with an influence weight of 15.00%. The second most influential factor is the availability of telecommunications infrastructure with an effect of 13.02%, the distance of land to roads and access of 11.76%, land use of 11.21%, distance of land to public facilities of 9.99%, labour cost work is 9.60%, the distance of land to the river is 8.19%, the price of land is 7.97%, the slope is 6.79%, and the type of soil is 6.43%. This GIS analysis model can be a reference model for the government in determining the potential of industrial zones in other regions in Indonesia. A total of 4822.41 Ha or the equivalent of 3.50% of the total area of 6 (six) regencies/cities research areas which are very suitable to be used as industrial zones. The district that has the largest area of potential industrial zone is Majalengka, while Cirebon does not have a location that has the potential for industrial zone locations. Based on the results of the analysis of 10 (ten) variables for determining industrial zones from expert opinion, a draft policy proposal for the government can be proposed, among others. These 10 (ten) variables are variables that are expected to be mandatory variables in planning and determining the location of potential industrial areas.
Copyright © by EnPress Publisher. All rights reserved.