Urbanization and suburbanization have led to high population growth in certain city regions, resulting in increased population density and mobility. Therefore, there is a need for a concept to address congestion, public transportation, information and communication systems, and non-motorized vehicles. Smart mobility is a concept of urban development as part of the smart city concept based on information and communication technology. Through this concept, it is expected that transportation services will be easily accessible, safe, comfortable, fast, and affordable for the community. This research aims to analyze smart mobility and its relationship with regional transportation planning and the development of South Tangerang, as well as to design a policy strategy model for the planning and development of South Tangerang with smart mobility. The research method used in this study is a mixed method, including analyzing the relationships and weighting of relationships between variables using the Cross Impact Multiplication applied to a classification (MICMAC) matrix. Multi-criteria decision analysis (MCDA) with Promethee software is also used to obtain the necessary policies. The results of this research indicate that the measurement of relationships between variables shows that smart mobility influences regional transportation planning, smart mobility affects regional development, and regional planning affects regional development. This research also provides alternative policies that policymakers should implement in a specific order. First, ensure the availability of public transportation; second, improve public transportation safety; third, enhance public transportation security; fourth, improve public transportation routes; fifth, provide real-time information access; sixth, improve transportation schedules; and seventh, increase the number of bicycle lanes.
The study’s goal was to investigate the impact of e-learning determinants on student satisfaction and intention to use e-learning tools. The dependent and independent variables in this study were based on the technological acceptance model. The study examines three determinants, including usefulness, ease of use, and facilitating conditions, as independent variables, while student satisfaction and intention to use were used as dependent variables. Additionally, this study is unique by adding student satisfaction as a dependent variable and a mediator to examine the relationship between e-learning determinants and intention to use. A questionnaire was prepared and distributed to 324 undergraduate students from Jordan’s private universities on the basis of a convenience sample. The proposed hypotheses were investigated using the quantitative techniques of regression in SPSS and SEM in AMOS. The findings of this study revealed that student satisfaction and intention to use e-learning were positively impacted by e-learning determinants. It found that intention to use was positively impacted by student satisfaction. Furthermore, e-learning intention to use was found to be positively impacted by e-learning determinants via student satisfaction. Universities and other educational institutions are advised to identify the appropriate e-learning determinants that satisfy students’ demands and motivate them to use e-learning tools in light of the study’s findings. Private universities can accomplish their goals, stay ahead of the competition, and obtain a competitive advantage by properly understanding e-learning determinants, student satisfaction, and the application of successful e-learning solutions.
Synthesis of macro-mesoporous Titania (Titanium dioxide-TiO2) nanospheres was successfully achieved using a modified template-free methodology to incorporate macroporous channels into a mesoporous TiO2 framework to form mixed macro-mesoporous TiO2 spheres (MMPT), which were doped with carbon dots (C-dots) to form improved nanocomposites (C-dots@MMPT). Elemental composition, surface bonding and optical properties of these nanocomposites were characterized by X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FTIR) and ultraviolet-visible absorption spectroscopy (UV-VIS). Evaluation of photocatalytic activity for each (C-Dots@MMPT) sample was performed via degrading the Methylene Blue (MB) dye compared with bare samples (MMPT) under visible light irradiation using 300 Watt halogen lamp.
After the oil and economic boom of the 20th century, Doha experienced significant development in terms of the architectural scene, design, function, and sociocultural transformations. The advancements in global architecture have facilitated innovative and streamlined construction processes, while creating a paradigm shift in the overall architecture of dwellings and how people navigate around the house. In this context, this research aims to study the impact of globalization on housing typologies and the factors influencing their evolution, focusing on the city of Doha as a case study. This study is based on a qualitative research approach that centers its investigation on Doha while exploring strategies for preserving Arabic-Islamic identity. The research investigation used a content analysis methodology to analyze three additional case studies within the MENA region. The results indicate that new housing typologies have emerged in cities due to globalization and changes in physical and sociocultural dimensions. In addition, preserving older neighborhoods and housing typologies through a bottom-up approach is essential for design creativity and climatic and sociocultural sensitivity while exchanging knowledge and sharing experiences between generations. Furthermore, this article promotes heritage awareness and encourages local authorities to preserve Doha’s surviving historic neighborhoods and architectural language to restore the city’s urban identity. The findings of this research can provide helpful guidance to architects and urban planners on how Doha’s housing has developed until the contemporary period.
In this study, the influence of sewage sludge ash (SSA) waste particle contents on the mechanical properties and interlaminar fracture toughness for mode I and mode II delamination of S-glass fiber-reinforced epoxy composites was investigated. Composite laminate specimens for tensile, flexural double-cantilever beam (DCB), and end-notched fracture (ENF) tests were prepared and tested according to ASTM standards with 5, 10, 15, and 20 wt% SSA-filled S-glass/epoxy composites. Property improvement reasons were explained based on optical and scanning electron microscopy. The highest improvement in tensile and flexural strength was obtained with a 10 wt% content of SSA. The highest mode I and mode II interlaminar fracture toughness’s were obtained with 15 wt% content of SSA. The mode I and mode II interlaminar fracture toughness improved by 33% and 63.6%, respectively, compared to the composite without SSA.
Green manufacturing is increasingly becoming popular, especially in lubricant manufacturing, as more environmentally friendly substitutes for mineral base oil and synthetic additives are being found among plant extracts and progress in methodologies for extraction and synthesis is being made. It has been observed that some of the important performance characteristics need enhancement, of which nanoparticle addition has been noted as one of the effective solutions. However, the concentration of the addictive that would optimised the performance characteristics of interest remains a contending area of research. The research was out to find how the concentration of green synthesized aluminum oxide nanoparticles in nano lubricants formed from selected vegetable oils influences friction and wear. A bottom-up green synthesis approach was adopted to synthesize aluminum oxide (Al2O3) from aluminum nitrate (Al(NO3)3) precursor in the presence of a plant-based reducing agent—Ipomoea pes-caprae. The synthesized Al2O3 nanoparticles were characterized using TEM and XRD and found to be mostly of spherical shape of sizes 44.73 nm. Al2O3 nanoparticles at different concentrations—0.1 wt%, 0.3 wt%, 0.5 wt%, 0.7 wt%, and 1.0 wt%—were used as additives to castor, jatropha, and palm kernel oils to formulate nano lubricants and tested alternately on a ball-on-aluminum (SAE 332) and low-carbon steel Disc Tribometer. All the vegetable-based oil nano lubricants showed a significant decrease in the coefficient of friction (CoF) and wear rate with Ball-on-(aluminum SAE 332) disc tribometer up to 0.5wt% of the nanoparticle: the best performances (eCOF = 92.29; eWR = 79.53) came from Al2O3-castor oil nano lubricant and Al2O3-palm kernel oil; afterwards, they started to increase. However, the performance indices displayed irregular behaviour for both COF and Wear Rate (WR) when tested on a ball-on-low-carbon steel Disc Tribometer.
Copyright © by EnPress Publisher. All rights reserved.