Amidst an upsurge in the quantity of delinquent loans, the financial industry is experiencing a fundamental transformation in the approaches utilised for debt recovery. The debt collection process is presently undergoing automation and improvement through the utilisation of Artificial Intelligence (AI), an emergent technology that holds the potential to revolutionise this sector. By leveraging machine learning, natural language processing, and predictive analytics, automated debt recovery systems analyse vast quantities of data, generate forecasts regarding the likelihood of recovery, and streamline operational processes. Debt collection systems powered by AI are anticipated to be compliant, precise, and effective. On the other hand, conventional approaches are linked to increasing expenditures and inefficiencies in operations. These solutions facilitate efficient resource allocation, customised communication, and rapid data analysis, all while minimising the need for human intervention. Significant progress has been made in data analytics, predictive modelling, and decision-making through the application of artificial intelligence (AI) in debt recovery; this has the potential to revolutionize the financial sector’s approach to debt management. The findings of the research underscore the criticality of artificial intelligence (AI) in attaining efficacy and precision, in addition to the imperative of a data-centric framework to fundamentally reshape approaches to debt collection. In conclusion, artificial intelligence possesses the capacity to profoundly transform the existing approaches utilized in debt management, thereby guaranteeing financial institutions’ sustained profitability and efficacy. The application of machine learning methodologies, including predictive modelling and logistic regression, signifies the potential of the system.
Remote sensing technologies have revolutionized forestry analysis by providing valuable information about forest ecosystems on a large scale. This review article explores the latest advancements in remote sensing tools that leverage optical, thermal, RADAR, and LiDAR data, along with state-of-the-art methods of data processing and analysis. We investigate how these tools, combined with artificial intelligence (AI) techniques and cloud-computing facilities, enhance the analytical outreach and offer new insights in the fields of remote sensing and forestry disciplines. The article aims to provide a comprehensive overview of these advancements, discuss their potential applications, and highlight the challenges and future directions. Through this examination, we demonstrate the immense potential of integrating remote sensing and AI to revolutionize forest management and conservation practices.
This exploratory study aims to identify the main characteristics and relationships between artificial intelligence (AI) and broadband development in Asia and the Pacific. Broadband networks are the foundation and prerequisite for the development of AI. But what types of broadband networks would be conducive are not adequately discussed so far. Furthermore, in addition to broadband networks, other factors, such as income level, broadband quality, and investment, are expected to influence the uptake of AI in the region. The findings are synthesized into a set of policy recommendations at the end of the article, which highlights the need for regional cooperation through an initiative, such as the Asia-Pacific Information Superhighway (AP-IS).
In the Fourth Industrial Revolution (4IR) era, the rapid digitalisation of services poses both opportunities and challenges for the banking sector. This study addresses how adopting artificial intelligence (AI) and online and mobile banking advancements can influence customer satisfaction, particularly in Kaduna State, Nigeria. Despite significant investments in AI and digital banking technologies, banks often struggle to align these innovations with customer expectations and satisfaction. Using Structural Equation Modeling (SEM), this research investigates the impact of customer satisfaction with online banking (C_O) on AI integration (I_A) and mobile banking convenience (C_M). The SEM model reveals that customer satisfaction with online banking significantly influences AI integration (path coefficient of 0.40) and mobile banking convenience (path coefficient of 0.68). These results highlight a crucial problem: while technological advancements in banking are growing, their effectiveness is highly dependent on customer satisfaction with existing digital services. The study underscores the need for banks to prioritise enhancing online banking experiences as a strategic lever to improve AI integration and mobile banking convenience. Consequently, the research recommends that Nigerian banks develop comprehensive frameworks to evaluate and optimise their technology integration strategies, ensuring that technological innovations align with customer needs and expectations in the rapidly evolving digital landscape.
The major goal of decisions made by a business organization is to enhance business performance. These days, owners, managers and other stakeholders are seeking for opportunities of modelling and automating decisions by analysing the most recent data with the help of artificial intelligence (AI). This study outlines a simple theoretical model framework using internal and external information on current and potential clients and performing calculations followed by immediate updating of contracting probabilities after each sales attempt. This can help increase sales efficiency, revenues, and profits in an easily programmable way and serve as a basis for focusing on the most promising deals customising personal offers of best-selling products for each potential client. The search for new customers is supported by the continuous and systematic collection and analysis of external and internal statistical data, organising them into a unified database, and using a decision support model based on it. As an illustration, the paper presents a fictitious model setup and simulations for an insurance company considering different regions, age groups and genders of clients when analysing probabilities of contracting, average sales and profits per contract. The elements of the model, however, can be generalised or adjusted to any sector. Results show that dynamic targeting strategies based on model calculations and most current information outperform static or non-targeted actions. The process from data to decision-making to improve business performance and the decision itself can be easily algorithmised. The feedback of the results into the model carries the potential for automated self-learning and self-correction. The proposed framework can serve as a basis for a self-sustaining artificial business intelligence system.
This study conducted a systematic literature review on current and emerging trends in the use of artificial intelligence (AI) for community surveillance, using the PRISMA methodology and the paifal.ai tool for the selection and analysis of relevant sources. Five main thematic areas were identified: AI technologies, specific applications, societal impact, regulations and public policy. Our findings revealed exponential growth in the development and implementation of AI technologies, with applications ranging from public safety to environmental monitoring. However, this advancement poses significant challenges related to privacy, ethics and governance, driving a debate on the need for appropriate regulations. The analysis also highlighted the disparity in the adoption of these technologies among different communities, suggesting a need for inclusive policies to ensure equitable benefits. This study contributes to the understanding of the current scenario of AI in community policing, providing a solid foundation for future research and developments in the field.
Copyright © by EnPress Publisher. All rights reserved.