Students from different cultures possess varying levels of skills in learning, remembering, and understanding concepts. Some terms and their explanations may seem easy for one group of students but difficult for another. Therefore, delivering educational content that aligns with student’s learning capabilities is a challenging task based on cultural orientations. This study addresses the learning challenges by developing a Thesaurus Glossary E-learning (TGE) framework method. This study introduces the TGE method which is a multi-language tool with visual associations that adapts to students’ capabilities. It also examines cultural differences and native languages, particularly aiding Arab Native to visualize appropriate terms (thesaurus) and their explanations (glossary) based on students’ learning capabilities. TGE learns from students’ term selection behavior and displays terms at a simple or advanced level that matches their learning ability. Additionally, TGE demonstrated its effectiveness as an e-learning tool, accessible to all students anytime and anywhere. The study analyzed 314 records related to student performance, out of which 114 students were surveyed to evaluate the effectiveness of the TGE method. This work presents TGE as a novel e-learning tool designed to enhance conceptual thinking within the context of modern educational practices during the digital transformation. TGE is based on artificial intelligence algorithms and associative rules that simulate the human brain, establishing logical connections between related key terms and sketching associations among diverse facets of a situation. An experiment was conducted at a private university in the Sultanate of Oman to assess the effectiveness of the proposed TGE tool. TGE was integrated with selected subjects in information systems and used by the students as a resource for e-learning methods and materials. The results show that 85% of students who used TGE improved their performance by 19%. We believe this work could establish a new smart e-learning teaching method and attract modern and digital universities to enhance student learning outcomes linked with conceptual thinking.
This study investigates the dynamic landscape of agritourism in Thailand, emphasizing innovations, challenges, and policy implications in the post-COVID-19 era. Employing a qualitative approach, including a comprehensive literature review and semi-structured interviews with stakeholders, the research identifies key agritourism models, such as immersive learning experiences, technology-driven agritourism, and unconventional practices like salt and coconut plantations. Findings reveal that agritourism has adapted to shifting market demands through diversification, technological integration, and a heightened focus on sustainability. Notably, technology adoption in precision farming and hydroponics enhances resource efficiency and visitor engagement, while initiatives like rice paddy field tourism and highland agritourism showcase the cultural and ecological richness of rural landscapes. The study underscores the critical role of policy frameworks, infrastructure development, and community empowerment in fostering sustainable agritourism practices. Key policy recommendations include targeted subsidies, capacity-building programs, and harmonized regulatory frameworks to address challenges such as financial constraints, regulatory ambiguities, and inadequate infrastructure. This research contributes to the broader discourse on sustainable tourism and rural development, aligning agritourism with the United Nations Sustainable Development Goals (SDGs). By synthesizing insights on innovation, resilience, and sustainability, this study offers a comprehensive roadmap for policymakers, practitioners, and academics to leverage agritourism as a vehicle for rural revitalization and global sustainability. Future research directions are proposed to explore the long-term impacts of technological integration, community empowerment, and resilience strategies in agritourism.
UAVs, also known as unmanned aerial vehicles, have emerged as an efficient and flexible system for offering a rapid and cost-effective solution. In recent years, large-scale mapping using UAV photogrammetry has gained significant popularity and has been widely adopted in academia as well as the private sector. This study aims to investigate the technical aspects of this field, provide insights into the procedural steps involved, and present a case study conducted in Cesme, Izmir. The findings derived from the case study are thoroughly discussed, and the potential applications of UAV photogrammetry in large-scale mapping are examined. The study area is divided into 12 blocks. The flight plans and the distribution of ground control point (GCP) locations were determined based on these blocks. As a result of the data processing procedure, average GCP positional errors ranging from 1 to 18 cm have been obtained for the blocks.
With the continuous development of facilities and horticulture, the area of vegetable planting in facilities increased year by year. Watermelon (Citrullus vulgaris Schrad) as the main cultivars within the facility, the continuous cropping problem is very serious, resulting in continuous cropping obstacles become increasingly obvious, the incidence of fusarium wilt increased year by year. Grafted watermelon roots developed to improve the growth of grafted roots of the conditions, resulting in robust plant growth. At the same time, the use of different purposes of the rootstock can make watermelon in different soil conditions under normal growth, such as the use of low temperature, drought, salt tolerance, barren and other characteristics of the rootstock. Secondly, the rootstock of the strong absorption of water absorption capacity, to promote the growth of grafted watermelon plants strong, large watermelon fruit, high yields. In addition, grafted watermelon seedlings grow fast early, for early maturing cultivation and overcome the seedless watermelon early growth slow defects is extremely favorable. So the use of pumpkin as a watermelon grafting rootstock, can effectively improve the effect of watermelon resistance to Fusarium wilts. And provide the theoretical basis and scientific basis for the further study of photosynthetic characteristics, disease resistance breeding and effective control of watermelon. In this experiment, the watermelon varieties with different resistance to fusarium wilt were selected, and the anti-fusarium wilt watermelon was studied systematically. There are changes in physiological characteristics during growth and development. In conclusion, grafting promotes the growth of watermelon and physiological characteristics of the index rose.
KEYWORDS: watermelon; fusarium wilt; growth period; physiological characteristics
Regarding to the influence of chloride and fluoride ions on the corrosion resistance, the electrochemical behavior of Ti alloys has been deeply studied. In this work, the main goal was to investigate the electrochemical behavior of cp-Ti and Ti-Mo alloys containing 6, 10 and 15 wt% of Mo concentrations. All the samples were immersed in different solutions, such as 0.15 mol L-1 Na2SO4, 0.15 mol L-1 Ringer, 0.15 mol L-1 Ringer plus 0.036 mol L-1 NaF and 0.036 mol L-1 NaF. Simulating the commercial fluorinated gels, the NaF solutions naturally-aerated were prepared with 1450 ppm of fluoride ions. The electrochemical techniques applied in this work were the open-circuit potential, cyclic voltammetry, besides the technique for chemical identification, which was X-ray photoelectron spectroscopy. The formation and growth of TiO2 and MoO2 were identified, without pitting corrosion. The electrochemical stability and the corrosion resistance of the Ti-Mo alloys decreased in the solutions containing chloride and fluoride ions, with an appreciative decrease especially in the fluorinated medium. The Ti-Mo alloy with higher Mo content concentration was the material with higher corrosion resistance. Therefore, it is a promising candidate as a biomaterial, once the osseointegration needs a satisfactory corrosion resistance for being achieved.
Copyright © by EnPress Publisher. All rights reserved.