Industrial heritage is a legacy from the past that we live with today and pass on to future generations. The economic value of this heritage can be defined as the amount of welfare that it generates for society, and this value should not be ignored. However, current research based on economic analysis has mostly focused on qualitative statements instead of quantitative assessment. This study proposes an innovative methodology combining qualitative (field research) and quantitative (willingness to pay and contingent valuation) methods to assess the economic value of industrial heritage. The industrial heritage of Tangshan, China, was chosen as a case study, and the research found that museums and cultural creative parks are effective ways to conserve industrial heritage. The entrance fee can be used to represent the economic value of the heritage site. There was a positive correlation between the influence of economic value and the entrance fees residents would prefer to pay. The results indicate the locals would prefer lower entrance fees for the transformed heritage museums (The average current cost: $2.23). Locals were most concerned about the entrance fees for the Kailuan Coal Mine and Qixin Cement Plant Museums, which have both been renewed as urban landmarks for city tourism. Renewal methods have been applied to six industrial heritage sites in Tangshan; these sites have their own conservation and renewal practices based on city-level development or industrial attributes. Thus, when residents recognize the economic value of a heritage site, they are willing to pay a higher entrance fee. This research demonstrates the economic value of industrial heritage using a mixed methods approach and provides a basis for assessing the value of cultural heritage for urban tourism analysis.
Increasing number of smart cities, the rise of technology and urban population engagement in urban management, and the scarcity of open data for evaluating sustainable urban development determines the necessity of developing new sustainability assessment approaches. This study uses passive crowdsourcing together with the adapted SULPiTER (Sustainable Urban Logistics Planning to Enhance Regional freight transport) methodology to assess the sustainable development of smart cities. The proposed methodology considers economic, environmental, social, transport, communication factors and residents’ satisfaction with the urban environment. The SULPiTER relies on experts in selection of relevant factors and determining their contribution to the value of a sustainability indicator. We propose an alternative approach based on automated data gathering and processing. To implement it, we build an information service around a formal knowledge base that accumulates alternative workflows for estimation of indicators and allows for automatic comparison of alternatives and aggregation of their results. A system architecture was proposed and implemented with the Astana Opinion Mining service as its part that can be adjusted to collect opinions in various impact areas. The findings hold value for early identification of problems, and increasing planning and policies efficiency in sustainable urban development.
This research examines three data mining approaches employing cost management datasets from 391 Thai contractor companies to investigate the predictive modeling of construction project failure with nine parameters. Artificial neural networks, naive bayes, and decision trees with attribute selection are some of the algorithms that were explored. In comparison to artificial neural network’s (91.33%) and naive bays’ (70.01%) accuracy rates, the decision trees with attribute selection demonstrated greater classification efficiency, registering an accuracy of 98.14%. Finally, the nine parameters include: 1) planning according to the current situation; 2) the company’s cost management strategy; 3) control and coordination from employees at different levels of the organization to survive on the basis of various uncertainties; 4) the importance of labor management factors; 5) the general status of the company, which has a significant effect on the project success; 6) the cost of procurement of the field office location; 7) the operational constraints and long-term safe work procedures; 8) the implementation of the construction system system piece by piece, using prefabricated parts; 9) dealing with the COVID-19 crisis, which is crucial for preventing project failure. The results show how advanced data mining approaches can improve cost estimation and prevent project failure, as well as how computational methods can enhance sustainability in the building industry. Although the results are encouraging, they also highlight issues including data asymmetry and the potential for overfitting in the decision tree model, necessitating careful consideration.
As cities continue to face the increasing demands of urban transportation and the need for sustainable mobility solutions, the integration of intelligent transportation systems (ITS) with smart city infrastructure emerges as a promising approach. This paper presents a novel framework for integrating ITS with smart city infrastructure, aiming to address the challenges of urban transportation and promote sustainable mobility. The framework is developed through a comprehensive literature review, case studies, and stakeholder interviews, providing significant insights into the integration process. Our research outlines the key components of smart city infrastructure that can be integrated with ITS, highlights the benefits of integration, and identifies the challenges and barriers that need to be addressed. Additionally, we propose and apply evaluation methods to assess the effectiveness of ITS integration with smart city infrastructure. The results demonstrate the novelty and significance of this framework, as it significantly reduces traffic congestion, improves air quality, and enhances citizen satisfaction. This paper contributes to the existing literature by providing a comprehensive approach to integrating ITS with smart city infrastructure, offering a transformative solution for urban transportation challenges.
The COVID-19 pandemic provided a unique opportunity for educators and policymakers to reconsider education systems and rethink what is essential, necessary, and desirable for future generations. A sequential generic qualitative approach was used in this study. Based on the systematic literature review, a content analysis was conducted to identify dimensions that contribute toward higher education institutions sustainability. Subsequently, the Expert Opinion method that involved five professors holding key positions in respective universities from Malaysia, the Netherlands, India, and Bangladesh was applied to propose a post-COVID-19 sustainable framework. Four themes: 1) educational reform; 2) digital transformation; 3) resilience and change management; and 4) sustainability coupled with agility and flexibility formed the framework for HEIs’ sustainability during the post-COVID-19 pandemic. We propose that the themes be examined from an integrated perspective to ensure HEIs can be sustainable in the long run. Finally, other scholars are recommended to conduct a tracer study as well as develop qualitative instruments based on the themes and dimensions identified from the systematic literature review and the Expert Opinion Method to better understand the phenomenon of HEI sustainability.
The new oil derivatives transportation scheme proposed by the 2013 Mexican Energy Reform allowed new participants to enter the sector. The new legal framework requires fulfilling many requirements and corresponding duties for the transportation of oil products. The Mexican government already has an institution dedicated to measuring the regulatory cost of each federal procedure. This work aims to quantify the regulatory costs associated with the procedures and their compliance to obtain permits for transporting oil products by truck. We use the standard cost method to measure these costs, considering all associated costs. The results showed that two government offices did not adequately measure these costs. They did not consider relevant information on frequency and opportunity costs, resulting in undervaluation and leading to wrong expectations. As a result of this research, we provide a more accurate way of estimating these costs, which brings greater certainty in the budgeting of these projects and, therefore, increases the probability of survival and success.
Copyright © by EnPress Publisher. All rights reserved.