The idea of emotions that is concealed in human language gives rise to metaphor. It is challenging to compute and develop a framework for emotions in people because of its detachment and diversity. Nonetheless, machine translation heavily relies on the modeling and computation of emotions. When emotion metaphors are calculated into machine translation, the language is significantly more colorful and satisfies translating criteria such as truthfulness, creativity and beauty. Emotional metaphor computation often uses artificial intelligence (AI) and the detection of patterns and it needs massive, superior samples in the emotion metaphor collection. To facilitate data-driven emotion metaphor processing through machine translation, the study constructs a bi-lingual database in both Chinese and English that contains extensive emotion metaphors. The fundamental steps involved in generating the emotion metaphor collection are demonstrated, comprising the basis of theory, design concepts, acquiring data, annotating information and index management. This study examines how well the emotion metaphor corpus functions in machine translation by proposing and testing a novel earthworm swarm-tunsed recurrent network (ES-RN) architecture in a Python tool. Additionally, the comparison study is carried out using machine translation datasets that already exist. The findings of this study demonstrated that emotion metaphors might be expressed in machine translation using the emotion metaphor database developed in this research.
The digital era has ushered in significant advancements in Generative Artificial Intelligence (GAI), particularly through Generative Models and Large Language Models (LLMs) like ChatGPT, revolutionizing educational paradigms. This research, set against the backdrop of Society 5.0 and aimed at sustainable educational practices, utilizes qualitative analysis to explore the impact of Generative AI in various learning environments. It highlights the potential of LLMs to offer personalized learning experiences, democratize education, and enhance global educational outcomes. The study finds that Generative AI revitalizes learning methodologies and supports educational systems’ sustainability by catering to diverse learning needs and breaking down access barriers. In conclusion, the paper discusses the future educational strategies influenced by Generative AI, emphasizing the need for alignment with Society 5.0’s principles to foster adaptable and sustainable educational inclusion.
Global trade is based on coordinated factors, that means labor and products are moved from their point of origin to the point of use. Strategies have a significant impact on global trade because they enable the effective development of goods across international borders. The decision making is an important task for the development of Logistics Supply Chain (LSC) infrastructure and process. Decisions on supplier selection, production schedule, transportation routes, inventory levels, pricing strategies, and other issues need to be made. These decisions may have a big influence on customer service, profitability, operational efficiency, and overall competitiveness. The Artificial Intelligence (AI) approach of Fuzzy Preference Ranking Organization Method for Enrichment Evaluation (Fuzzy-Promethee-2) is used to assess the priority selection of the factors associated with the LSC and evaluate the importance in global trade. The role of AI is very useful compare to statistical analysis in terms of decision making. The computational analysis placed promotion of exports as the most important priority out of five selected attributes in LSC, with infrastructure development. The result suggests that LSC depends heavily on export promotion as the most significant attribute. Infrastructural development also appeared another factor influencing LSC. The foreign investment was ranked the lowest. The evaluated results are useful for the policy makers, supply chain managers and the logistics professionals associated with the supply chain management.
This study aims to predict whether university students will make efficient use of Artificial Intelligence (AI) in the coming years, using a statistical analysis that predicts the outcome of a binary dependent variable (in this case, the efficient use of AI). Several independent variables, such as digital skills management or the use of Chat GPT, are considered.The results obtained allow us to know that inefficient use is linked to the lack of digital skills or age, among other factors, whereas Social Sciences students have the least probability of using Chat GPT efficiently, and the youngest students are the ones who make the worst use of AI.
The use of artificial intelligence (AI) in the detection and diagnosis of plant diseases has gained significant interest in modern agriculture. The appeal of AI arises from its ability to rapidly and precisely analyze extensive and complex information, allowing farmers and agricultural experts to quickly identify plant diseases. The use of artificial intelligence (AI) in the detection and diagnosis of plant diseases has gained significant attention in the world of agriculture and agronomy. By harnessing the power of AI to identify and diagnose plant diseases, it is expected that farmers and agricultural experts will have improved capabilities to tackle the challenges posed by these diseases. This will lead to increased effectiveness and efficiency, ultimately resulting in higher agricultural productivity and reduced losses caused by plant diseases. The use of artificial intelligence (AI) in the detection and diagnosis of plant diseases has resulted in significant benefits in the field of agriculture. By using AI technology, farmers and agricultural professionals can quickly and accurately identify illnesses affecting their crops. This allows for the prompt adoption of appropriate preventative and corrective actions, therefore reducing losses caused by plant diseases.
Copyright © by EnPress Publisher. All rights reserved.