Background: Bitcoin mining, an energy-intensive process, requires significant amounts of electricity, which results in a particularly high carbon footprint from mining operations. In the Republic of Kazakhstan, where a substantial portion of electricity is generated from coal-fired power plants, the carbon footprint of mining operations is particularly high. This article examines the scale of energy consumption by mining farms, assesses their share in the country’s total electricity consumption, and analyzes the carbon footprint associated with bitcoin mining. A comparative analysis with other sectors of the economy, including transportation and industry is provided, along with possible measures to reduce the environmental impact of mining operations. Materials and methods: To assess the impact of bitcoin mining on the carbon footprint in Kazakhstan, electricity consumption from 2016 to 2023, provided by the Bureau of National Statistics of the Republic of Kazakhstan, was used. Data on electricity production from various types of power plants was also analyzed. The Life Cycle Assessment (LCA) methodology was used to analyze the environmental performance of energy systems. CO2 emissions were estimated based on emission factors for various energy sources. Results: The total electricity consumption in Kazakhstan increased from 74,502 GWh in 2016 to 115,067.6 GWh in 2023. The industrial sector’s electricity consumption remained relatively stable over this period. The consumption by mining farms amounted to 10,346 GWh in 2021. A comparative analysis of CO2 emissions showed that bitcoin mining has a higher carbon footprint compared to electricity generation from renewable sources, as well as oil refining and car manufacturing. Conclusions: Bitcoin mining has a significant negative impact on the environment of the Republic of Kazakhstan due to high electricity consumption and resulting carbon dioxide emissions. Measures are needed to transition to sustainable energy sources and improve energy efficiency to reduce the environmental footprint of cryptocurrency mining activities.
The study’s objectives are to investigate the relationships between earnings management, government ownership, and corporate performance in the Gulf Cooperation Council (GCC) region during the period 2017–2021, utilizing a dataset comprising 188 companies. It further explores the moderating role of government ownership in the association between earnings management and company performance. The study used the panel regression data analysis to investigate the relationship between the variables under the study. Employing linear regression and moderated linear regression, the research discerns notable patterns. The result shows a positive effect emerges between government ownership and corporate performance. Conversely, the result shows a negative association is observed between earnings management and corporate performance. Finally, the moderating role of government ownership in GCC countries is a good governance mechanism to mitigate the agency problem.
Fiscal spending for road construction to link Kalabakan, Sabah, Malaysia with North Kalimantan, Indonesia is an idea that have been proposed for over 20 years. The announcement for the relocation of Indonesia’s capital city from Jakarta to East Kalimantan give a strong justification for the construction of the Serudong-Simanggaris road. The fact that population size is big in Kalimantan and strong purchasing power is estimated in North and East Kaliamantan provide a strong argument for the need to have a road link. Having said that, the effect of road construction on output growth is not clear. The purpose of this study is to estimate the impact of road construction and the business activities across two sectors being assumed on output Sabah’s output growth. Based on the input-output analysis conducted using the output multiplier, the one-off road construction would lead to 1.8% growth in Sabah’s overall output.
This study examines the bottleneck effect of logistics performance on Vietnam’s imports, utilizing bilateral trade data from 2007 to 2022. We evaluate the impact of logistics performance on imports of Vietnam using the augmented gravity model and a random effects estimator. Our findings reveal that the minimum logistics performance between Vietnam and its trading partners has a significantly positive impact on the Vietnamese imports. The magnitude of its bottleneck effects is much larger than the influence of Vietnam’s individual logistics performance or deviations in performance with its trading partners. Recognizing the impact of logistics bottlenecks on international trade enables policymakers to develop more effective and efficient logistics-related policies for enhancing bilateral trade with trading partners.
The Mass Rapid Transit (MRT) Purple Line project is part of the Thai government’s energy- and transportation-related greenhouse gas reduction plan. The number of passengers estimated during the feasibility study period was used to calculate the greenhouse gas reduction effect of project implementation. Most of the estimated numbers exceed the actual number of passengers, resulting in errors in estimating greenhouse gas emissions. This study employed a direct demand ridership model (DDRM) to accurately predict MRT Purple Line ridership. The variables affecting the number of passengers were the population in the vicinity of stations, offices, and shopping malls, the number of bus lines that serve the area, and the length of the road. The DDRM accurately predicted the number of passengers within 10% of the observed change and, therefore, the project can help reduce greenhouse gas emissions by 1289 tCO2 in 2023 and 2059 tCO2 in 2030.
This paper uses existing studies to explore how Artificial Intelligence (AI) advancements enhance recruitment, retention, and the effective management of a diverse workforce in South Africa. The extensive literature review revealed key themes used to contextualize the study. This study uses a meta-narrative approach to literature to review, critique and express what the literature says about the role of AI in talent recruitment, retention and diversity mapping within South Africa. An unobtrusive research technique, documentary analysis, is used to analyze literature. The findings reveal that South Africa’s Human Resource Management (HRM) landscape, marked by a combination of approaches, provides an opportunity to cultivate alternative methods attuned to contextual conditions in the global South. Consequently, adopting AI in recruiting, retaining, and managing a diverse workforce demands a critical examination of the colonial/apartheid past, integrating contemporary realities to explore the potential infusion of contextually relevant AI innovations in managing South Africa’s workforce.
Copyright © by EnPress Publisher. All rights reserved.