Metal iodide materials as novel components of thermal biological and medical systems at the interface between heat transfer techniques and therapeutic systems. Due to their outstanding heat transfer coefficients, biocompatibility, and thermally activated sensitivity, metal iodides like silver iodide (AgI), copper iodide (CuI), and cesium iodide (CsI) are considered to be useful in improving the performance of medical instruments, thermal treatment processes, and diagnostics. They are examined for their prospective applications in controlling thermal activity, local heating therapy, and smart temperature-sensitive drug carrier systems. In particular, their application in hyperthermia therapy for cancer treatment, infrared thermal imaging for diagnosis, and nano-based drug carriers points to a place for them in precision medicine. But issues of stability of materials used, biocompatibility, and control of heat—an essential factor that would give the tools the maximum clinical value—remain a challenge. The present mini-review outlines the emerging area of metal iodides and their applications in medical technologies, with a special focus on the pivotal role of these materials in enhancing non-invasive, efficient, and personalized medicine. Over time, metal iodide-based systems scouted a new era of thermal therapies and diagnostic instrumentation along with biomedical science as a whole.
The article’s proposed engineering uses are based on theories presented in the reviewed research articles and on findings from online investigations into companies that claim to use nanoengineering in their wares. Several pre-existing online consumer inventories and nanotechnology news were examined as part of the internet inquiry. The data about the nanoparticles (NP), or nanostructure, used in commercially available products comes from the remarks made by the manufacturer. Nanoengineered coating agents and textile additives are examples of commercial items developed for industrial clients that fall under the aforementioned uses.
This study aims to examine the entrepreneurial activities of 240 women in the districts of Konaseema, East Godavari, and Kakinada during 2021–2022, focusing on the diverse range of 286 enterprises they managed across 69 business types. These enterprises were tailored to local resources and market demands, with coconut wholesale, cattle breeding, and provision shops being the most common. The study also analyzes income distribution, noting that one-third of the women earned between ₹50,000–1,00,000 annually, while only 0.70% earned over ₹5,00,000. More than half of the enterprises served as the primary income source for their families. The research highlights the significant role these women entrepreneurs play in their communities, their job satisfaction derived from financial independence and social empowerment, and the challenges they face, such as limited capital and market access. Finally, the study offers recommendations to empower these women to seize entrepreneurial opportunities and enhance their success.
This study delves into the complex flow dynamics of magnetized bioconvective Ellis nanofluids, highlighting the critical roles of viscous dissipation and activation energy. By employing a MATLAB solver to tackle the boundary value problem, the research offers a thorough exploration of how these factors, along with oxytactic microorganism’s mobility, shape fluid behavior in magnetized systems. Our findings demonstrate that an increase in the magnetization factor leads to a decrease in both velocity and temperature due to enhanced interparticle resistance from the Lorentz force. Additionally, streamline analysis reveals that higher mixed convection parameters intensify flow concentration near surfaces, while increased slip parameters reduce shear stress and boundary layer thickness. Although isotherm analysis shows that higher Ellis fluid parameters enhance heat conduction, with greater porosity values promoting efficient thermal dissipation. These insights significantly advance our understanding of nanofluid dynamics, with promising implications for bioengineering and materials science, setting the stage for future research in this field.
This paper discusses the concept of creating a new reality using the approaches of smart cities to develop eco-cities, in which the necessary balance between nature and progress can be maintained. The authors propose that the concept of smart cities should be used as a tool for the creation of eco-cities, and argue that the positive synergies between the two will be strongest if the smart concept acts as a tool for the creation of eco. The core elements of a smart eco-city are identified as smart sustainable use of resources, a smart sustainable healthy community, and a smart sustainable economy. The results of the article were the foundation for the development concept for Vision Bratislava 2050—the vision and strategy for the development of the capital of the Slovak Republic. The authors also discuss the challenges of transforming cities into smart eco-formats, including the need for digital resilience in the face of potential cataclysms. They suggest that this is a promising area for further research into the concept of smart eco-cities.
Copyright © by EnPress Publisher. All rights reserved.