Due to rising global environmental challenges, air/water pollution treatment technologies, especially membrane techniques, have been focused on. In this context, air or purification membranes have been considered effective for environmental remediation. In the field of polymeric membranes, high-performance polymer/graphene nanocomposite membranes have gained increasing research attention. The polymer/graphene nanomaterials exposed several potential benefits when processed as membranes. This review explains the utilization of polymer and graphene-derived nanocomposites towards membrane formation and water or gas separation or decontamination properties. Here, different membrane designs have been developed depending upon the polymer types (poly(vinyl alcohol), poly(vinyl chloride), poly(dimethyl siloxane), polysulfone, poly(methyl methacrylate), etc.) and graphene functionalities. Including graphene in polymers influences membrane microstructure, physical features, molecular permeability or selectivity, and separations. Polysulfone/graphene oxide nanocomposite membranes have been found to be most efficient with an enhanced rejection rate of 90%–95%, a high water flux >180 L/m2/h, and a desirable water contact angle for water purification purposes. For gas separation membranes, efficient membranes have been reported as polysulfone/graphene oxide and poly(dimethyl siloxane)/graphene oxide nanocomposites. In these membranes, N2, CO2, and other gases permeability has been found to be higher than even >99.9%. Similarly, higher selectivity values for gases like CO2/CH4 have been observed. Thus, high-performance graphene-based nanocomposite membranes possess high potential to overcome the challenges related to water or gas molecular separations.
The main objective of the study is to discuss the application of a participatory approach that involves the community of a small rural area in Italy to develop and maintain a sustainable local food system based on a very ancient and high-quality typical local bean. The efficacy of the approach in terms of the active involvement of local actors (farming communities, local administration, social associations, and civil society) and knowledge transfer for preserving the local food culture has been demonstrated. Possible improvements to the approach through digital technologies for stimulating the effective engagement of teenagers have also been discussed.
Accurate temperature control during the induction heating process of carbon fiber reinforced polymer (CFRP) is crucial for the curing effect of the material. This paper first builds a finite element model of induction heating, which combines the actual fiber structure and resin matrix, and systematically analyzes the heating mechanism and temperature field distribution of CFRP during the heating process. Based on the temperature distribution and variation observed in the material heating process, a PID control method optimized by the sparrow search algorithm is proposed, which effectively reduces the temperature overshoot and improves the response speed. The experiment verifies the effectiveness of the algorithm in controlling the temperature of the CFRP plate during the induction heating process. This study provides an effective control strategy and research method to improve the accuracy of temperature control in the induction heating process of CFRP, which helps to improve the results in this field.
Hybrid learning (HL) has become a significant part of the learning style for the higher education sector in the Sri Lankan context amidst the COVID-19 pandemic and the subsequent economic crisis. This research study aims to discover the effectiveness of hybrid learning (EHL) practices in enhancing undergraduates’ outcomes in Sri Lankan Higher Educational Institutions (HEIs) management faculties. The data for the study were gathered through an online questionnaire survey, which received 379 responses. The questionnaire contained 38 questions under four sections covering independent variables, excluding demographic questions. The results indicate that hybrid learner attitude, interaction, and benefits of hybrid learning positively impact the effectiveness of hybrid learning. The results remain consistent even after controlling for socio-demographic factors and focusing only on students employed during their higher education. The study concluded that employed students have a higher preference for the effectiveness of hybrid learning concepts, and the benefits of hybrid learning play a crucial role in enhancing the effectiveness among undergraduates. The study analyzes COVID-19’s impact on higher education, proposing hybrid learning and regulatory frameworks based on pandemic experiences while stressing the benefits of remote teaching and research.
In 2015, the newly built undergraduate colleges have accounted for half of the ordinary undergraduate colleges. Through the investigation, it is concluded that the newly built undergraduate colleges in Sichuan have the following commonalities in the transformation: the school positioning of "application-oriented"; The embodiment of the new university spirit of "serving local construction"; The talent training goal of "innovative and composite applied talents"; Flexible personnel training curriculum system.
Copyright © by EnPress Publisher. All rights reserved.