In the past three decades, nanotechnology has attracted extensive attention. People have many expectations on the utilization of nanotechnology in medicine, but unfortunately, these expectations are unlikely to be realized. In the field of nanotechnology, the niche for building commercial products has not been developed yet. However, metal nanoparticles have attracted people’s attention since ancient times because of their optical properties, which are very different from those of bulk metals. By understanding the origin of these optical properties and using current technology, these nanoparticles can be manipulated to build a palette. Using micro measurement equipment, the palette can be printed with very good resolution.
In order to explore the influence of the ferroelectric surface on the structure and properties of semiconductor oxides, the growth of CdS nanocrystals was regulated and controlled by taking single-crystal perovskite PbTiO3 nanosheets as the substrate through a simple hydrothermal method. Through composition design, a series of PbTiO3-CdS nanocomposite materials with different loading concentrations were prepared, and their microstructure and photocatalytic properties were systematically analyzed. Studies show that in the prepared product, CdS nanoparticles selectively grow on the surfaces of PbTiO3 nanosheets, and their morphology is affected by the exposed surfaces of PbTiO3 nanosheets. There is a clear interface between the PbTiO3 substrate and CdS nanoparticles. The concentration of the initial reactant and the time of hydrothermal reaction also significantly affect the crystal morphology of CdS. Photocatalysis studies have shown that the prepared PbTiO3-CdS nanocomposite material has a significant degradation effect on 10 mg/L of Rhodamine B aqueous solution. The degradation efficiency rises with the increase of CdS loading concentration. When degrading 10 mg/L Rhodamine B aqueous solution, the PbTiO3-CdS sample with a mass fraction of 3% can reach a degradation rate of 72% within 120 min.
The Cu2–xSe nanoparticles were synthesized by high temperature pyrolysis, modified with aminated polyethylene glycol in aqueous solution and loaded with compound 2,2′–azobis[2–(2–imidazolin–2–yl)propane] dihydrochloride (AIPH). The obtained nanomaterials can induce photothermal effect and use heat to promote the generation of toxic AIPH radicals under the irradiation of near-infrared laser (808 nm), which can effectively kill cancer cells. A series of in vitro experiments can preliminarily prove that Cu2–xSe–AIPH nanomaterials have strong photothermal conversion ability, good biocompatibility and anticancer properties.
Tropical dry forests are complex and fragile ecosystems with high anthropogenic intervention and restricted reproductive cycles. They harbor unique richness, structural, physiological and phenological diversity. This research was carried out in the upper Magdalena valley, in four forest fragments with different successional stages. In each fragment, four permanent plots of 0.25 ha were established and the light habitat associated with species richness, relative abundance and rarity was evaluated, as well as the forest dynamics that included mortality, recruitment and diameter growth for a period of 5.25 years. In mature riparian forest, species richness was found to be higher than that reported in other studies for similar areas in the Cauca Valley and the Atlantic coast. Values of species richness, heterogeneity and rarity are higher than those found in drier areas of Tolima. Forest structure, diversity and dynamics were correlated with light habitat, showing differences in canopy architecture and its role in the capture and absorption of radiation. The utilization rate of photosynthetic effective radiation in the forest underlayer with high canopy density is low, which is related to the low species richness, while the underlayer under light is more abundant and heterogeneous.
Knowledge of the state of fragmentation and transformation of a forested landscape is crucial for proper planning and biodiversity conservation. Chile is one of the world’s biodiversity hotspots; within it is the Nahuelbuta mountain range, which is considered an area of high biodiversity value and intense anthropic pressure. Despite this, there is no precise information on the degree of transformation of its landscape and its conservation status. The objective of this work was to evaluate the state of the landscape and the spatio-temporal changes of the native forests in this mountain range. Using Landsat images from 1986 and 2011, thematic maps of land use were generated. A 33% loss of native forest in 25 years was observed, mainly associated to the substitution by forest plantations. Changes in the spatial patterns of land cover and land use reveal a profound transformation of the landscape and advanced fragmentation of forests. We discuss how these patterns of change threaten the persistence of several endemic species at high risk of extinction. If these anthropogenic processes continue, these species could face an increased risk of extinction.
The electrospinning precursor solution was prepared by dissolving polyvinyl pyrrolidone as template, tetrabutyl titanate as titanium source, and acetic acid as inhibitor. The TiO2 nanofilms were prepared by precursor solution electrospinning and subsequent calcination. Thermal gravimetric analysis (TG), scanning electron microscopy (SEM), X-ray powder diffraction (XRD), and transmission electron microscopy (TEM) were used to characterize and analyze the samples. The influence of technological parameters on spinning fiber morphology was also studied. The results indicate that the TiO2 nanofibers morphology is good when the parameters are as follows: voltage 1.4×104 V,spinning distance 0.2 m,translational velocity 2.5×10-3 m·s-1, flow rate 3×10-4 m·s-1, and needle diameter 3×10-4 m. The diameter of the fibers is about 150 nm. With the 1×10-4 mol·L-1 methylene blue solution used as simulated degradation target, the degradation rate is 95.8% after 180 minutes.
Copyright © by EnPress Publisher. All rights reserved.