The study explores improving opportunities of forecasting accuracy from the traditional method through advanced forecasting techniques. This enables companies to optimize inventory management, production planning, and reducing the travelling time thorough vehicle route optimization. The article introduced a holistic framework by deploying advanced demand forecasting techniques i.e., AutoRegressive Integrated Moving Average (ARIMA) and Recurrent Neural Network-Long Short-Term Memory (RNN-LSTM) models, and the Vehicle Routing Problem with Time Windows (VRPTW) approach. The actual milk demand data came from the company and two forecasting models, ARIMA and RNN-LSTM, have been deployed using Python Jupyter notebook and compared them in terms of various precision measures. VRPTW established not only the optimal routes for a fleet of six vehicles but also tactical scheduling which contributes to a streamlined and agile raw milk collection process, ensuring a harmonious and resource-efficient operation. The proposed approach succeeded on dropping about 16% of total travel time and capable of making predictions with approximately 2% increased accuracy than before.
Most countries have adopted a more liberal policy to socialize public relations under the influence of neoliberalism and lobbying by economic elites to strengthen the role of market mechanisms and citizens’ entrepreneurial activity. The nature, scale, sequence, and strategy of economic and social reforms in each country have their specifics. Today multi-vector and large-scale changes are taking place in social and labor policy, and they do not always have an internal logic. The study assesses prospects for the development of the labor market in the context of global transformations. Within the framework of this study, the collected information was processed gradually. Data processing was modified during the study phase. At the first stage, data processing results were used to determine total and non-farm self-employment for two groups of countries with developing economies and estimate the scale of vulnerable employment. At the second stage, indicators were identified that characterize various categories of economically active population that belong to the precariat. At the third stage, the authors analyzed data on non-standard forms of employment. The authors assumed that these forms have a right to exist and will be implemented more often. There is an imbalance between standard and non-standard forms of employment. Further research should consider the transformation of labor from material and intangible dominants to creativity.
This study investigates the significance of data analytics in digital marketing for sustainable business growth. Data analytics has become an indispensable instrument in the world of digital marketing, offering organisations the means to achieve sustainable growth while minimising their environmental impact. We gathered data from 273 marketing and business consultants, chosen for their expertise in digital channels and data analytics, using a survey research design. The questionnaire, which was validated through expert review and pilot testing, assessed the relationship between data analytics utilization and its impact on competitive advantage and business optimization. We conducted statistical analyses, including descriptive and inferential statistics, using SPSS version 25.0. Findings reveal a significant correlation between data analytics adoption in digital marketing and sustainable business competitive advantage, as well as a notable impact on business optimization. Recommendations emphasise the strategic importance of customer segmentation and predictive analytics in leveraging data analytics for targeted marketing campaigns and proactive adjustments to market trends. This study underscores the indispensability of data analytics in the evolving digital marketing landscape, offering actionable insights for businesses seeking sustainable growth and competitive advantage.
The focus of the article is the evaluation of the interaction between regional state bodies and business structures in Kazakhstan, specifically in terms of the development of public-private partnerships. The purpose of the research is to enhance the understanding of the theoretical and practical aspects of the mechanism of interaction between the state and business structures. Through an examination of the various structural components of the partnership development strategy, the study aims to identify the elements of the mechanism for the implementation of the state and business development strategy. Additionally, the research seeks to establish the correlation between the outcomes of the joint entrepreneurship mechanism and the criteria used to evaluate the performance of regional state bodies. To assess the effectiveness of the interaction between business and government at the regional level in Kazakhstan, a survey-based evaluation was conducted to measure the satisfaction levels of public utilities, entrepreneurs, and businesses with the activities of local authorities. The survey also evaluated the degree of corruption among local authorities. A matrix of interaction between business and government was created, and various models and algorithms for the interaction between government representatives and business structures were studied. The research findings highlight the importance of enhancing the collaboration between the state and the business sector, promoting the implementation of public-private partnerships, and establishing social partnerships to cultivate mutually beneficial relationships.
Copyright © by EnPress Publisher. All rights reserved.