Soil salinization is a difficult challenge for agricultural productivity and environmental sustainability, particularly in arid and semi-arid coastal regions. This study investigates the spatial variability of soil electrical conductivity (EC) and its relationship with key cations and anions (Na+, K+, Ca2+, Mg2+, Cl⁻, CO32⁻, HCO3⁻, SO42⁻) along the southeastern coast of the Caspian Sea in Iran. Using a combination of field-based soil sampling, laboratory analyses, and Landsat 8 spectral data, linear Multiple Linear Regression and Partial Least Squares Regression (MLR, PLSR) and nonlinear Artifician Neural Network and Support Vector Machine (ANN, SVM) modeling approaches were employed to estimate and map soil EC. Results identified Na+ and Cl⁻ as the primary contributors to salinity (r = 0.78 and r = 0.88, respectively), with NaCl salts dominating the region’s soil salinity dynamics. Secondary contributions from Potassium Chloride KCl and Magnesium Chloride MgCl2 were also observed. Coastal landforms such as lagoon relicts and coastal plains exhibited the highest salinity levels, attributed to geomorphic processes and anthropogenic activities. Among the predictive models, the SVM algorithm outperformed others, achieving higher R2 values and lower RMSE (RMSETest = 27.35 and RMSETrain = 24.62, respectively), underscoring its effectiveness in capturing complex soil-environment interactions. This study highlights the utility of digital soil mapping (DSM) for assessing soil salinity and provides actionable insights for sustainable land management, particularly in mitigating salinity and enhancing agricultural practices in vulnerable coastal systems.
In learning, one of the fundamental motivating factors is self-efficacy. Therefore, it is crucial to understand the level of students’ self-efficacy in learning programming. This article presents a quantitative study on undergraduate students’ perceived programming self-efficacy. 110 undergraduate computing students took part in this survey to assess programming self-efficacy. Before being given to the respondents, the survey instrument, which included a 28-item self-efficacy assessment and 30 multiple-choice programming questions, was pilot-tested. The survey instrument had a reliability of 0.755. The study results show that the students’ self-efficacy was low when they solved complex programming tasks independently. However, they felt confident when there was an assistant to guide them through the tasks. From this study, it could be concluded that self-efficacy is an essential achievement component in programming courses and can avoid education dropouts.
The use of artificial intelligence (AI) in the detection and diagnosis of plant diseases has gained significant interest in modern agriculture. The appeal of AI arises from its ability to rapidly and precisely analyze extensive and complex information, allowing farmers and agricultural experts to quickly identify plant diseases. The use of artificial intelligence (AI) in the detection and diagnosis of plant diseases has gained significant attention in the world of agriculture and agronomy. By harnessing the power of AI to identify and diagnose plant diseases, it is expected that farmers and agricultural experts will have improved capabilities to tackle the challenges posed by these diseases. This will lead to increased effectiveness and efficiency, ultimately resulting in higher agricultural productivity and reduced losses caused by plant diseases. The use of artificial intelligence (AI) in the detection and diagnosis of plant diseases has resulted in significant benefits in the field of agriculture. By using AI technology, farmers and agricultural professionals can quickly and accurately identify illnesses affecting their crops. This allows for the prompt adoption of appropriate preventative and corrective actions, therefore reducing losses caused by plant diseases.
In recent years, e-sports, as an emerging form of competition, has been rapidly integrated into the daily life of college students, and with its rich interactivity, instant feedback and teamwork, e-sports provides them with an effective channel for emotional catharsis and psychological regulation. This study takes students from four universities as the survey object and adopts quantitative research method to analyze the relationship between different types of e-sports activities and psychological stress resistance through questionnaire survey method combined with spss. The samples were randomly sampled, and a total of 500 valid questionnaires were collected. The results of the study show that: 1. In terms of participation, the ability of students to withstand academic stress and life stress is significantly improved, and e-sports is an effective way to regulate emotions and relieve stress; 2. the three types of games (First-person Shooter, Multiplayer Online Battle Arena, Real-Time Strategy Game) have different impacts on stress tolerance, of which FPS has the greatest impact on stress tolerance; 3. the frequency of playing e-sports affects your stress tolerance; 4. teamwork and strategy play an important role in e-sports resilience.
Higher education (HE) consists of both conventional and non-conventional methods of learning. Open and Distance Learning (ODL) is a non-conventional system where teachers (often referred to as facilitators) are physically not present. The conduct of practical in engineering and science education using ODL remains a challenge due to inadequate technology and the dispersion of the students, which results in a graduate skills gap in ODL programs. There is a possibility of using a cloud computing set-up, as well as platforms for the creation of simulated virtual practical settings (virtual laboratories-VLs), which could be accessible by ODL engineering and science and education-based students notwithstanding their locations. This paper adds to existing knowledge on VLs and discusses these inadequacies in engineering and science education with emphasis on the enhancement of online and collaborative learning, as well as the possible laboratory (lab) requirements. In addition, the paper highlights contemporary trends and some issues in VLs and remote labs.
Copyright © by EnPress Publisher. All rights reserved.