Every plant is significantly important in tackling climate change, including Makila (Litsea angulata BI) an endemic wood species found in the forest of Moluccas Provinces. Therefore, this research aimed to examine the role of the Makila plant in tackling climate change by measuring biomass content using constructing an allometric equation. The method used was a destructive sampling, where 40 units of Makila plant at the sampling level were felled, and sorted according to root, stem, branch, rating, and leaf segments. Each segment was weighed both at wet and after drying, followed by a classical assumption test in data processing, and the formulation of an allometric equation. The regression model was examined for normality and suitability in predicting independent variables, ensuring there were no issues with multicollinearity, heteroscedasticity, and autocorrelation. The results yielded a multiple linear regression, namely: Y = −1131.146 + 684.799X1 + 4.276X2, where Y is biomass, X1 is the diameter, and X2 is the tree height. Based on the results of the t-test: variable X1 partially affected Y while variable X2 partially had no effect on Y. The F-test indicated that variables X1 and X2 jointly affected Y with R Square: 0.919 or 91.9% and the rest was influenced by other unexplored factors. To simplify biomass prediction and field measurement, a regression equation that used only 1 independent variable, namely tree diameter, was used for the experiment. Allometric equation only used 1 variable, Y = −1,084,626 + 675,090X1, where X1 = tree diameter, Y = Total biomass with R = 0.957, and R2 = 0.915. Considering the potential for time, cost, and energy savings, as well as ease of measurement in the field, the biomass of young Makila trees was simply predicted by measuring the tree diameter and avoiding the height. This method used the strong relationship between biomass, plant diameter, and height to facilitate the estimation of biomass content accurately by entering the results of field measurements.
This study aims to explore the implications of imported electrical equipment in Indonesia, analysing both short-term and long-term impacts using a quantitative approach. The research focuses on understanding how various economic factors, such as domestic production, international pricing, national income, and exchange rates, influence the country’s import dynamics in the electrical equipment sector. Employing an Error Correction Model (ECM) for regression analysis, the study utilises time-series data from 2007 to 2021 to delve into the complex interplay of these variables. The methodology involves a comprehensive analysis using the Augmented Dickey-Fuller and Phillips-Perron tests to assess the stationarity of the data. This approach ensures the robustness of the ECM, which is employed to analyse the short-term and long-term effects of the identified variables on electrical equipment imports in Indonesia. The results reveal significant relationships between these economic factors and import levels. In the short term, imports are shown to be sensitive to changes in domestic economic conditions and international market prices, while in the long term, the country’s economic growth, reflected through GDP, emerges as a significant determinant. The findings suggest that Indonesia’s electrical equipment import policies must adapt highly to domestic and international economic changes. In the short term, a responsive approach is required to manage the immediate impacts of market fluctuations. The study highlights the importance of aligning import strategies with broader economic growth and environmental sustainability goals for long-term sustainability. Policymakers are advised to focus on enhancing domestic production capabilities, reducing import dependency, and ensuring that environmental considerations are integral to import policies. This study contributes to understanding import dynamics in a developing country context, offering valuable insights for policymakers and industry stakeholders in shaping strategies for economic growth and sustainability in the electrical equipment sector. The findings underscore the need for a balanced, data-driven approach to managing imports, aligning short-term responses with long-term strategic objectives for Indonesia’s ongoing development and industrial advancement.
This study aims to evaluate the influence of population dependency ratio on the economic growth of Bangladesh, India, and Pakistan, the three members of the South Asian Association for Regional Cooperation (SAARC). The study covers the time from 1960 to 2021. It also analyses in detail how population aging and the youth dependency ratio affects the development of certain sectors, including industry, services and agriculture. This study uses panel data to determine the influence of population dependency ratios on economic growth. To estimate this effect, we use the Pooled Mean Group/Autoregressive Distributed Lag (PMG/ARDL) technique. Based on the results obtained from the ARDL analysis indicate the presence of a long-term relationship among these variables. These discoveries align with prior empirical research conducted by Lee and Shin, Mamun et al., and Rostiana and Rodesbi. Furthermore, the findings suggest that an increase in the old age population dependency ratio positively influences economic growth within these nations. The long-term relationship findings pertaining to the old and young dependency ratio and economic growth corroborate the conclusions of Bawazir et al., who proposed that the old population dependency ratio exerts a favorable impact, while the young population has an adverse effect on economic growth. Originality: This research focused on the population dependency ratio, a pivotal demographic metric that gauges the proportion of individuals relying on support (including children and the elderly) compared to those of working age. This investigation particularly explores the interconnection between the population dependency ratio and sectoral development, an essential aspect given that various sectors make distinct contributions to economic advancement. Examining how population dynamics affect sectoral development yields valuable insights into the overall economic performance of Pakistan, India, and Bangladesh.
This article emphasizes the critical role of the subsidiarity principle in facilitating adaptation to climate change. Employing a comparative legal analysis approach, the paper examines how this principle, traditionally pivotal in distributing powers within the European Union, could be adapted globally to manage climate change displacement. Specifically, it explores whether subsidiarity can surmount the challenges posed by national sovereignty and states’ reluctance to cede control over domestic matters. Findings indicate that while domestic efforts and local adaptations should be prioritized, international intervention becomes imperative when national capacities are overwhelmed. This article proposes that ‘causing countries’ and the global community bear a collective responsibility to act. The Asia-Pacific region, characterized by diverse and vulnerable ecosystems like small islands, coastal areas, and mountainous regions, serves as the focal point for this study. The research underscores the necessity of developing policies and further research to robustly implement the subsidiarity principle in protecting climate-displaced populations.
Using generative artificial intelligence systems in the classroom for law case analysis teaching can enhance the efficiency and accuracy of knowledge delivery. They can create interactive learning environments that are appropriate, immersive, integrated, and evocative, guiding students to conduct case analysis from interdisciplinary and cross-cultural perspectives. This teaching method not only increases students’ interest and participation in learning but also helps cultivate their interdisciplinary thinking and global vision. However, the application of generative artificial intelligence systems in legal education also faces some challenges and issues. If students excessively rely on these systems, their ability to think independently, make judgments, and innovate may be weakened, leading to over-trust in machines and reinforcement of value biases. To address these challenges and issues, legal education should focus more on cultivating students’ questioning skills, self-analysis abilities, critical thinking, basic legal literacy, digital skills, and humanistic spirit. This will enable students to respond to the challenges brought by generative artificial intelligence and ensure their comprehensive development in the new era.
Copyright © by EnPress Publisher. All rights reserved.