Social and environmental issues gain more importance for society that stimulates companies to adopt and integrate more sustainability practices into their business activities. This study is embedded in almost uncovered in the literature context of Russian business that undergoes its ESG transformation in conditions of unprecedented sanctions and hostile institutional environment. The study aims to reveal the role of internal stakeholders (top managers, line managers, and employees) in successful implementation of a company’s ESG practices along various dimensions. Using the primary data from 29 large Russian companies the fsQCA method is applied to identify various configurations of contingencies that stimulate their ESG performance. The analysis results in identification of two alternative core conditions for high ESG performance in Russian companies: high top management commitment to sustainability and low employees’ commitment to sustainability or the employees’ awareness about sustainability. At the end, the study results in two generic profiles composed of top management commitment, line management support, and employees’ awareness, behavior, and commitment towards ESG performance. The results show two different approaches towards ESG transformation that may bring a company to the comparably similar desired outcome. The study has a potential for generalization on a wider scope of emerging market contexts.
The objective of this work was to analyze the effect of the use of ChatGPT in the teaching-learning process of scientific research in engineering. Artificial intelligence (AI) is a topic of great interest in higher education, as it combines hardware, software and programming languages to implement deep learning procedures. We focused on a specific course on scientific research in engineering, in which we measured the competencies, expressed in terms of the indicators, mastery, comprehension and synthesis capacity, in students who decided to use or not ChatGPT for the development and fulfillment of their activities. The data were processed through the statistical T-Student test and box-and-whisker plots were constructed. The results show that students’ reliance on ChatGPT limits their engagement in acquiring knowledge related to scientific research. This research presents evidence indicating that engineering science research students rely on ChatGPT to replace their academic work and consequently, they do not act dynamically in the teaching-learning process, assuming a static role.
Uncontrolled economic development often leads to land degradation, a decline in ecosystem services, and negative impacts on community welfare. This study employs water yield (WY) modeling as a method for environmental management, aiming to provide a comprehensive understanding of the relationship between Land Use Land Cover (LULC), Land Use Intensity (LUI), and WY to support sustainable natural resource management in the Cisadane Watershed, Indonesia. The objectives include: (1) analyzing changes in WY for 2010, 2015, and 2021; (2) predicting WY for 2030 and 2050 under two scenarios—Business as Usual (BAU) and Protected Forest Area (PFA); (3) assessing the impacts of LULC and climate change on WY; and (4) exploring the relationship between LUI and WY. The Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model calculates actual and predicted WY conditions, while the Coupling Coordination Degree (CCD) analyzes the LULC-WY relationship. Results indicate that the annual WY in 2021 was 215.8 × 108 m³, reflecting a 30.42% increase from 2010. Predictions show an increasing trend in WY under both scenarios for 2030 and 2050 with different magnitudes. Rainfall contributes 88.99% more dominantly to WY than LULC. Additionally, around 50% of districts exhibited unbalanced coordination between LUI and WY in 2010 and 2020. This study reveals the importance of ESs in sustainable watershed management amidst increasing demand for natural resources due to population growth.
This research examines the influence of virtual community platform attributes on luxury consumers’ purchase intentions, with a specific focus on the role of policy innovation in digital infrastructure. The study aims to 1) identify key factors affecting purchase intentions toward luxury products in virtual environments; 2) develop and validate a structural equation model to analyze these intentions; and 3) provide actionable insights for luxury goods marketers to refine their strategies within these platforms. Utilizing a structural equation model, the study investigates the interactions among various determinants of consumer behavior in virtual communities, highlighting the impact of policy innovation. Data was collected through purposive sampling from 1142 respondents in China’s top 10 high-spending cities on luxury goods, ensuring data relevance. The findings emphasize the significance of knowledge sharing, interactive communication, and leaders’ opinions in virtual communities in building consumer trust and shaping perceptions of online reviews. These elements influence purchase intentions directly and indirectly, with consumer trust serving as a crucial mediator. The study reveals the substantial impact of virtual community attributes on fostering consumer trust and shaping buying decisions for luxury items, underlining the contribution of social development processes. Moreover, the role of policy innovation is found to be significant in enhancing these virtual community dynamics, suggesting that regulatory changes can positively influence consumer engagement and trust. The conclusions offer valuable implications for marketers, proposing strategies to boost consumer engagement and drive sales in virtual settings. This research contributes to the theoretical understanding of digital consumer behavior and provides practical strategies for innovation and growth within the luxury goods sector, emphasizing the critical role of policy innovation in shaping these dynamics.
This research examines intangible assets or intellectual capital (IC) performance of tourism-related industries in an underexplored area which is a tourism intensively-dependent country. In this study, VAIC which is a monetary valuation method and also the most widely applied measurement method, is utilized as the performance measurement method for quantifying IC performance to monetary values. Moreover, to better understand performance, the standard efficiency levels are further applied for classifying the performance levels of tourism industries. The sample sizes of study are 20 companies operating in the tourism-related industries in the world top travel destination or Thailand, and the companies’ data are collected from 2012 to 2021. Therefore, finally, there are 187 firm-year observations. The utilization of VAIC could assess IC performance of tourism firms and industries, and the standard efficiency levels further support the uniform interpretation of IC efficiency levels. The obtained results show the strong performance of both human and structural capital of the focused tourism dependent country especially in the logistics industry that directly supports and connects to the tourism attractions. Moreover, the finding also highlights the significance of human capital which plays as a major contributor for overall IC performance in this tourism dependent economy. This study contributes the new exploration of IC in the high impact industries and also specifically in the top significant tourism country. Moreover, the application of VAIC also confirms a practical application for management. The limited number of studied countries is a limitation of study. However, these new obtained data and information could be further applied for making comparisons or in-depth or statistical analysis in the future works.
Copyright © by EnPress Publisher. All rights reserved.