Atom transfer radical polymerization (ATRP) is a kind of controllable reactive radical polymerization method with potential application value. The modification of graphene oxide (GO) by ATRP reaction can effectively control various graft polymer molecules Chain length and graft density, giving GO different functionality, such as good solvent dispersibility, environmental sensitive stimulus responsiveness, biocompatibility, and the like. In this paper, ATRP reaction and GO surface non-covalent bonding ATRP polymer molecular chain were directly initiated from GO surface immobilization initiator. The ATRP reaction modified GO was reviewed, and the process conditions and research methods of ATRP modification reaction were summarized, as well as pointed out the functional characteristics and application prospect of GO functionalized composites.
This article delves into the controversial practice of utilizing a student’s first language (L1) as a teaching resource in second language (L2) learning environments. Initially, strategies such as code-switching/code-mixing and translanguaging were considered signs of poor linguistic ability. There was a strong push towards using only the target language in foreign language education, aiming to limit the first language’s interference and foster a deeper immersion in the new language. However, later research has shown the benefits of incorporating the first language in bilingual education and language learning processes. It’s argued that a student’s knowledge in their native language can actually support their comprehension of a second language, suggesting that transferring certain linguistic or conceptual knowledge from L1 to L2 can be advantageous. This perspective encourages the strategic use of this knowledge transfer in teaching methods. Moreover, the text points to positive results from various studies on the positive impact of L1 usage in L2 classrooms. These insights pave the way for further exploration into the application of the first language in adult English as a Second Language (ESL)/English as a Foreign Language (EFL) education, particularly regarding providing corrective feedback.
High-quality implementation of cross-border mergers and acquisitions (cross-border M&As) is an important pathway for emerging-market multinational enterprises (EMNEs) to enhance their international competitiveness. However, in comparison to developed countries, cross-border M&As by EMNEs are often prohibited by the liability of origin caused by negative political coverage. How and why negative political coverage affect the completion of cross-border M&As by EMNEs? What are the contextual constraints that moderate the impact of negative political coverage on cross-border M&As completion? Based on the “liability of origin” theory, this paper addresses these questions using data from the Zephyr database on cross-border M&As by EMNEs in the United States from 2016 to June 2021 and employing a logit model for estimation. The research findings are as follows: (1) Negative political coverage leads to negative perceptions of emerging market countries by host country stakeholders, creating the liability of origin and stigmatizing the corporate nationality, thereby reducing the success rate of cross-border M&As by EMNEs. (2) Increasing geographical distance leads to information asymmetry, reinforcing the negative impact of negative political coverage on the completion of cross-border M&As by EMNEs. (3) Relevant mergers and acquisitions exacerbate the negative effect of negative political coverage on the success rate of cross-border M&As by EMNEs. (4) Being a publicly traded firm and having successful experience in cross-border M&As both intensify the negative impact of negative political coverage on the success rate of cross-border M&As by EMNEs.
Horticultural crops are rich in constituents such as proteins, carbohydrates, vitamins, and minerals important for human health. Under biotic and abiotic stress conditions, rhizospheric bacteria are powerful sources of phytohormones such as indole acetic acid (IAA), gibberellic acid (GA), abscisic acid (ABA) and Plant growth regulators including cytokines, ammonia, nitrogen, siderophores, phosphate, and extra cellular enzymes. These phytohormones help horticultural crops grow both directly and indirectly. In recent agricultural practices, the massive use of chemical fertilizers causes a major loss of agricultural land that can be resolved by using the potent plant growth-promoting rhizospheric bacteria that protect the agricultural and horticultural crops from the adverse effect of phytopathogens and increase crop quality and yield. This review highlights the role of multifunctional rhizospheric bacteria in the growth promotion of horticultural crops in greenhouse conditions and agricultural fields. The relevance of plant growth hormones in horticultural crops highlighted in the current study is crucial for sustainable agriculture.
The cars industry has undergone significant technological advancements, with data analytics and artificial intelligence (AI) reshaping its operations. This study aims to examine the revolutionary influence of artificial intelligence and data analytics on the cars sector, particularly in terms of supporting sustainable business practices and enhancing profitability. Technology-organization-environment model and the triple bottom line technique were both used in this study to estimate the influence of technological factors, organizational factors, and environmental factors on social, environmental (planet), and economic. The data for this research was collected through a structured questionnaire containing closed questions. A total of 327 participants responded to the questionnaire from different professionals in the cars sector. The study was conducted in the cars industry, where the problem of the study revolved around addressing artificial intelligence in its various aspects and how it can affect sustainable business practices and firms’ profitability. The study highlights that the cars industry sector can be transformed significantly by using AI and data analytics within the TOE framework and with a focus on triple bottom line (TBL) outputs. However, in order to fully benefit from these advantages, new technologies need to be implemented while maintaining moral and legal standards and continuously developing them. This approach has the potential to guide the cars industry towards a future that is environmentally friendly, economically feasible, and socially responsible. The paper’s primary contribution is to assist professionals in the industry in strategically utilizing Artificial Intelligence and data analytics to advance and transform the industry.
Copyright © by EnPress Publisher. All rights reserved.