The major goal of decisions made by a business organization is to enhance business performance. These days, owners, managers and other stakeholders are seeking for opportunities of modelling and automating decisions by analysing the most recent data with the help of artificial intelligence (AI). This study outlines a simple theoretical model framework using internal and external information on current and potential clients and performing calculations followed by immediate updating of contracting probabilities after each sales attempt. This can help increase sales efficiency, revenues, and profits in an easily programmable way and serve as a basis for focusing on the most promising deals customising personal offers of best-selling products for each potential client. The search for new customers is supported by the continuous and systematic collection and analysis of external and internal statistical data, organising them into a unified database, and using a decision support model based on it. As an illustration, the paper presents a fictitious model setup and simulations for an insurance company considering different regions, age groups and genders of clients when analysing probabilities of contracting, average sales and profits per contract. The elements of the model, however, can be generalised or adjusted to any sector. Results show that dynamic targeting strategies based on model calculations and most current information outperform static or non-targeted actions. The process from data to decision-making to improve business performance and the decision itself can be easily algorithmised. The feedback of the results into the model carries the potential for automated self-learning and self-correction. The proposed framework can serve as a basis for a self-sustaining artificial business intelligence system.
E-learning has become an integral part of higher education, significantly influencing the teaching and learning landscape. This study investigates the impact of student characteristics such as gender, grade, and major on E-learning satisfaction. Utilizing Structural Equation Modeling (SEM) and collecting data through 527 valid questionnaires from Nanjing Normal University students, this research reveals the nuanced relationships between these variables and E-learning satisfaction. The findings indicate that gender, grade, and major significantly and positively impact student satisfaction with E-learning, highlighting the need for tailored E-learning resources to meet diverse student needs. The study underscores the importance of continuous improvement in E-learning resources and platforms to enhance student satisfaction. This research contributes to the understanding of effective E-learning strategies in higher education institutions.
The study documents the model of the knowledge transfer process between the University, the Vocational Training Center and the industrial actors. The research seeks to answer to the following questions. Where is new knowledge generated? Where does knowledge originate from? Is there a central actor? If so, which organization? Hypotheses tested by the research: H1: Knowledge starts from the higher education institution. H2: Most “new knowledge” is generated in universities and large multinational companies. H3: The university is a central actor in the knowledge flow, transmitting both hard and soft skills, as well as subject (‘know-what’), organizational (‘know-why’), use (‘know-how’), relational (‘know-who’), and creative (‘care-why’) knowledge. The aim of the research is to model the way of knowledge flow between the collaborating institutions. The novelty of this research is that it extends the analysis of the knowledge flow process not only to the actors of previous researches (higher education institutions, business organizations, and government) but also to secondary vocational education and training institutions. The methodology used in the research is the analysis of the documents of the actors investigated and the questionnaire survey among the participants. Knowledge transfer is the responsibility of the university and its partner training and business organizations. In vocational education and training, knowledge flows based on the knowledge economy, innovation and technological development are planned, managed and operational. The research has shown that knowledge is a specific good that it is indivisible in its production and consumption, that it is easy and cheap to transfer and learn.
This research aims to examine the influence of IHRMP, recruitment and selection, training, compensation, and performance appraisal on the productivity of Faculty Members (FM) productivity working in private universities in the UAE. The study also examines the mediating role of Organizational Commitment (OC) and the moderating role of the Entrepreneurial Mind-set (EM). The research adopted the social exchange theory. A survey was conducted comprising 160 FM. The data was analyzed using Structural Equation Modelling, Smart-PLS. The findings indicate a positive relationship between IHRMP and the productivity of the FM. The findings also show that OC mediates the relationship between IHRMP and the productivity of FM. Finally, an EM was found to moderate the relationship between IHRMP and the productivity of FM.
Uncontrolled economic development often leads to land degradation, a decline in ecosystem services, and negative impacts on community welfare. This study employs water yield (WY) modeling as a method for environmental management, aiming to provide a comprehensive understanding of the relationship between Land Use Land Cover (LULC), Land Use Intensity (LUI), and WY to support sustainable natural resource management in the Cisadane Watershed, Indonesia. The objectives include: (1) analyzing changes in WY for 2010, 2015, and 2021; (2) predicting WY for 2030 and 2050 under two scenarios—Business as Usual (BAU) and Protected Forest Area (PFA); (3) assessing the impacts of LULC and climate change on WY; and (4) exploring the relationship between LUI and WY. The Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model calculates actual and predicted WY conditions, while the Coupling Coordination Degree (CCD) analyzes the LULC-WY relationship. Results indicate that the annual WY in 2021 was 215.8 × 108 m³, reflecting a 30.42% increase from 2010. Predictions show an increasing trend in WY under both scenarios for 2030 and 2050 with different magnitudes. Rainfall contributes 88.99% more dominantly to WY than LULC. Additionally, around 50% of districts exhibited unbalanced coordination between LUI and WY in 2010 and 2020. This study reveals the importance of ESs in sustainable watershed management amidst increasing demand for natural resources due to population growth.
The telecommunications services market faces essential challenges in an increasingly flexible and customer-adaptable environment. Research has highlighted that the monopolization of the spectrum by one operator reduces competition and negatively impacts users and the general dynamics of the sector. This article aims to present a proposal to predict the number of users, the level of traffic, and the operators’ income in the telecommunications market using artificial intelligence. Deep Learning (DL) is implemented through a Long-Short Term Memory (LSTM) as a prediction technique. The database used corresponds to the users, revenues, and traffic of 15 network operators obtained from the Communications Regulation Commission of the Republic of Colombia. The ability of LSTMs to handle temporal sequences, long-term dependencies, adaptability to changes, and complex data management makes them an excellent strategy for predicting and forecasting the telecom market. Various works involve LSTM and telecommunications. However, many questions remain in prediction. Various strategies can be proposed, and continued research should focus on providing cognitive engines to address further challenges. MATLAB is used for the design and subsequent implementation. The low Root Mean Squared Error (RMSE) values and the acceptable levels of Mean Absolute Percentage Error (MAPE), especially in an environment characterized by high variability in the number of users, support the conclusion that the implemented model exhibits excellent performance in terms of precision in the prediction process in both open-loop and closed-loop.
Copyright © by EnPress Publisher. All rights reserved.