The process of internationalization and innovation (IPI) in the urban road passenger transport (URPT) sector is driven by the need to provide cities with efficient and sustainable mobility solutions. The objective of this study is to understand the perceptions of URPT employees in relation to PII, based on a comprehensive case study. By exploring how these two concepts interrelate and influence each other, the study seeks to provide valuable information that can help improve strategic planning and policy formulation in the urban transport sector. The research, based on semi-structured interviews with 20 employees, reveals significant gaps in internal communication, with only about half of the participants aware of ongoing national and international projects. Information was often limited to those directly involved, indicating a need for improved dissemination strategies. Despite these communication issues, employees positively view the company’s presence at international events and recognize the importance of involvement in European organizations, particularly for knowledge acquisition and networking. Challenges identified include inadequate internal communication and insufficient investment in international projects. However, there was strong agreement on the value of internationalization and innovation process (IIP) for both professional development and organizational growth. To enhance the company’s international presence and return on investment (ROI), the study recommends better coordination, improved information sharing, and strategic planning. These findings emphasize the critical role of effective communication and active participation in international initiatives for the sustainable growth of the organization.
This study evaluated the performance of several machine learning classifiers—Decision Tree, Random Forest, Logistic Regression, Gradient Boosting, SVM, KNN, and Naive Bayes—for adaptability classification in online and onsite learning environments. Decision Tree and Random Forest models achieved the highest accuracy of 0.833, with balanced precision, recall, and F1-scores, indicating strong, overall performance. In contrast, Naive Bayes, while having the lowest accuracy (0.625), exhibited high recall, making it potentially useful for identifying adaptable students despite lower precision. SHAP (SHapley Additive exPlanations) analysis further identified the most influential features on adaptability classification. IT Resources at the University emerged as the primary factor affecting adaptability, followed by Digital Tools Exposure and Class Scheduling Flexibility. Additionally, Psychological Readiness for Change and Technical Support Availability were impactful, underscoring their importance in engaging students in online learning. These findings illustrate the significance of IT infrastructure and flexible scheduling in fostering adaptability, with implications for enhancing online learning experiences.
The aim of this study is to determine how bank diversification affects bank stability. To this end, it examines data of 136 commercial banks operating in 14 MENA (Middle East and North Africa) countries observed from 2005 to 2021, using the System Generalized Method of Moments (GMM) panel data regression analysis. The selected countries are Bahrain, Egypt, Jordan, Kuwait, Oman, Qatar, Saudi Arabia, Morocco, Lebanon, Algeria, Tunisia, Iran, Iraq, and the United Arab Emirates. The main results point to the enhancing effect of income diversification on bank stability. Our results underline the “Bright Side” of banking income diversification in the MENA region. However, this stabilizing income diversification effect is not always maintainable. The results also point to a non-linear relationship between interest/non-interest income and financial stability, suggesting that higher diversification reduces risk. We use a dynamic panel threshold model to determine income diversification thresholds that stabilize banks in the MENA region.
This study introduces an innovative approach to assessing seismic risks and urban vulnerabilities in Nador, a coastal city in northeastern Morocco at the convergence of the African and Eurasian tectonic plates. By integrating advanced spatial datasets, including Landsat 8–9 OLI imagery, Digital Elevation Models (DEM), and seismic intensity metrics, the research develops a robust urban vulnerability index model. This model incorporates urban land cover dynamics, topography, and seismic activity to identify high-risk zones. The application of Landsat 8–9 OLI data enables precise monitoring of urban expansion and environmental changes, while DEM analysis reveals critical topographical factors, such as slope instability, contributing to landslide susceptibility. Seismic intensity metrics further enhance the model by quantifying earthquake risk based on historical event frequency and magnitude. The calculation based on higher density in urban areas, allowing for a more accurate representation of seismic vulnerability in densely populated areas. The modeling of seismic intensity reveals that the most susceptible impact area is located in the southern part of Nador, where approximately 50% of the urban surface covering 1780.5 hectares is at significant risk of earthquake disaster due to vulnerable geological formations, such as unconsolidated sediments. While the findings provide valuable insights into urban vulnerabilities, some uncertainties remain, particularly due to the reliance on historical seismic data and the resolution of spatial datasets, which may limit the precision of risk estimations in less densely populated areas. Additionally, future urban expansion and environmental changes could alter vulnerability patterns, underscoring the need for continuous monitoring and model refinement. Nonetheless, this research offers actionable recommendations for local policymakers to enhance urban planning, enforce earthquake-resistant building codes, and establish early warning systems. The methodology also contributes to the global discourse on urban resilience in seismically active regions, offering a transferable framework for assessing vulnerability in other coastal cities with similar tectonic risks.
Tourism plays a crucial role in driving economic development, and there is a growing demand to integrate sustainability into the sector, particularly in the financial practices of governments. This study introduces the Quintessence Sustainable Tourism Public Finances (QSustainableTPF) model, which combines five established financial models commonly used in the tourism industry. The research aims to identify statistically significant relationships between these models and assess their impact on sustainability and financial performance in tourism. A quantitative methodology was employed, with data collected from financial reports and budget documents of both local and central governments, along with a survey of 2099 citizens and visitors conducted during the 2023–2024 period. Statistical analysis was performed using SPSS and AMOS, incorporating exploratory factor analysis (EFA), reliability testing using Cronbach’s alpha, and confirmatory factor analysis (CFA). The findings underscore the essential role of public finance in supporting tourism sustainability, particularly through transparent budgetary practices, efficient allocation of resources, and targeted investment in local tourism initiatives. The analysis reveals key insights into the benefits of financial transparency, citizen-centred budgeting, and the promotion of innovation in tourism finance. The interconnectedness of the five models highlights the importance of responsible public financial management in fostering tourism growth, enhancing investment, and ensuring long-term financial sustainability in the sector. The study offers practical implications for policymakers, advocating for the adoption of transparent and innovative financial practices to boost tourism development. It also recommends further research to broaden the scope across different regions, integrating additional public finance dimensions to strengthen sustainable tourism growth.
This paper investigates the transformative role of Artificial Intelligence (AI) in enhancing infrastructure governance and economic outcomes. Through a bibliometric analysis spanning more than two decades of research from 2000 to 2024, the study examines global trends in AI applications within infrastructure projects. The analysis reveals significant research themes across diverse sectors, including urban development, healthcare, and environmental management, highlighting the broad relevance of AI technologies. In urban development, the integration of AI and Internet of Things (IoT) technologies is advancing smart city initiatives by improving infrastructure systems through enhanced data-driven decision-making. In healthcare, AI is revolutionizing patient care, improving diagnostic accuracy, and optimizing treatment strategies. Environmental management is benefiting from AI’s potential to monitor and conserve natural resources, contributing to sustainability and crisis management efforts. The study also explores the synergy between AI and blockchain technology, emphasizing its role in ensuring data security, transparency, and efficiency in various applications. The findings underscore the importance of a multidisciplinary approach in AI research and implementation, advocating for ethical considerations and strong governance frameworks to harness AI’s full potential responsibly.
Copyright © by EnPress Publisher. All rights reserved.