The Belt and Road Initiative (BRI) aims to enhance connectivity and collaboration among 60 countries and beyond in Asia, Africa and Europe. Information and communications technology (ICT) is an indispensable component of the initiative, critical in providing fundamental communication channels for global financial transactions, trade exchanges and transport and energy connectivity, and socio cultural collaboration and scientific exchanges between people, organizations and countries along the BRI corridors. Previously constrained by infrastructure deficits in ICT, the Asia-Pacific region is accelerating its efforts to provide reliable and affordable broadband networks throughout the region, to contribute to successful implementation of the Sustainable Development Goals (SDG).
Within the BRI corridors, this study which has been undertaken as part of the research programme of the United Nations Economic and Social Commission for Asia and the Pacific (ESCAP) on promoting regional economic cooperation and integration, focuses on the China-Central Asia Corridor (China, Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan and Uzbekistan), giving attention to the sub-region’s specific challenges, namely limited international transit opportunities and an increase in bandwidth requirements that is expected to grow exponentially, as the fourth industrial evolution centered on automation and artificial intelligence gathers momentum. The sub-region is characterized as highly dependent on the ease and costs of connecting to neighboring countries for transit, as many countries in the sub-region are landlocked developing countries (LLDC). Because of the geographical features and other factors, the development potential of Central Asia and its integration into globalization, continues to be stymied by insufficient international bandwidth and high transit costs to access international links. Therefore, improved ICT connectivity in Central Asia through the BRI corridor could result in improved availability and affordability of broadband networks and services in the sub-region.
For the purpose of this study, a gap analysis is the methodology that underpins the proposed topology for the China-Central Asia Corridor. The analysis included examining the current state of the optic infrastructure, such as existing and planned fiber-optic networks, existing Internet Exchange Points (IXPs) and international gateways. The study also identifies the key factors that determine the desired future state of infrastructure deployment for the BRI initiative. A topology that consists of connecting Almaty (Kazakhstan) and Urumqi (China), as core nodes, is proposed based on a partial mesh topology. Over and above this core finding, the study concludes that digital infrastructure connectivity has a tendency of lagging behind the rapid opportunities evolving, and the study therefore advocates for sub-regional and regional approaches, including the BRI and Asia-Pacific Information Superhighway (AP-IS) in further expanding regional broadband networks. A key recommendation of the study is co-deployment of broadband infrastructure along passive infrastructure, as an additional cost effective means of achieving fast and affordable broadband connectivity for all.
This study presents a comprehensive two-dimensional numerical analysis of natural laminar convection within a square cavity containing two circular heat sources, which simulate electric cables generating heat due to Joule heating. This scenario is particularly relevant in aeronautics, where excessive heating of electrical installations can lead to significant material and human safety risks. The primary objective of this research is to identify the optimal spacing between the two heat sources to mitigate the risk of overheating and ensure the safe operation of the electrical installation. To achieve this, various configurations were analyzed by adjusting the distance between the heat sources while also varying the Rayleigh number across a range from 103 to 106. The governing equations for the fluid flow and heat transfer were solved using a FORTRAN-based numerical code employing the finite volume method. The results indicate that the heat transfer characteristics within the cavity are significantly influenced by both the distance between the heat sources and the Rayleigh number. The analysis revealed that the average Nusselt number (Nuavg) peaked at a value of 14.69 when the distance between the heat sources was set at 0.7 units and the Rayleigh number was at 106. This finding suggests that maintaining this specific spacing between the electrical cables can optimize heat dissipation and enhance the safety of the installation. In conclusion, the study recommends adopting a spacing of 0.7 units between the electrical cables to ensure optimal thermal performance and minimize the risk of overheating, thereby safeguarding both the materials and personnel involved in aeronautical operations.
Mapping land use and land cover (LULC) is essential for comprehending changes in the environment and promoting sustainable planning. To achieve accurate and effective LULC mapping, this work investigates the integration of Geographic Information Systems (GIS) with Machine Learning (ML) methodology. Different types of land covers in the Lucknow district were classified using the Random Forest (RF) algorithm and Landsat satellite images. Since the research area consists of a variety of landforms, there are issues with classification accuracy. These challenges are met by combining supplementary data into the GIS framework and adjusting algorithm parameters like selection of cloud free images and homogeneous training samples. The result demonstrates a net increase of 484.59 km2 in built-up areas. A net decrement of 75.44 km2 was observed in forest areas. A drastic net decrease of 674.52 km2 was observed for wetlands. Most of the wastelands have been converted into urban areas and agricultural land based on their suitability with settlements or crops. The classifications achieved an overall accuracy near 90%. This strategy provides a reliable way to track changes in land cover, supporting resource management, urban planning, and environmental preservation. The results highlight how sophisticated computational methods can enhance the accuracy of LULC evaluations.
This paper analyses the impact of an integrated business management system on business operations in trade in Republic of Croatia. The integration of management systems provides various benefits to a company, so the aim of this paper is to analyse the impacts of integrated management systems on the business operations of trade companies in the Republic of Croatia. The purpose of this paper is to examine and analyse, but also to adequately theoretically argue the impact of transformational leadership, quality culture, and the degree of integration on the development of integrated management systems. Empirical research investigated integrated management systems in companies in the trade sector in the Republic of Croatia. Based on the set conceptual model and research results, we conclude that companies with a highly developed quality culture have proven management system integration. Our research didn’t confirm the significance of transformational leadership in interpreting changes in the degree of management system integration, but it highlights the positive correlation between the application of quality culture and integration; confirms the substantial impact of integrated management systems on both internal and external benefits, emphasizing its strategic imperative for sustained business success.
The expanding blue economy, marked by its focus on sustainable use of ocean resources, offers enormous opportunity for Small and Medium-sized Enterprises (SMEs). However, for SMEs to properly integrate and succeed in this economy, they must first have a thorough awareness of the sector’s challenges and prospects. This research used a scoping review and a qualitative study to identify the challenges and opportunities facing SMEs operating in the blue economy. The study discovered recurring themes and gaps in the existing literature by conducting an extensive examination of scholarly publications. The key challenges identified include complicated regulatory frameworks, restricted access to funding, infrastructure restrictions, talent deficiencies, government support, and market outreach. In-depth interviews with Malaysian SME leaders, industry stakeholders, and policymakers were conducted to decipher these findings. The results of interviews confirmed the relevance of the regulatory framework, infrastructure restrictions, talent deficit, and market access challenges in the Malaysian context. In particular, the study revealed emerging opportunities for Malaysian blue SMEs in sectors such as renewable energy, sustainable fisheries, marine biotechnology, and ecotourism. The study emphasizes the importance of an encouraging policy framework, knowledge-sharing platforms, and capacity building activities. It finishes by underlining the ability of SMEs to drive a sustainable and thriving blue economy, if challenges are systematically handled, and opportunities are appropriately capitalized.
Aiming at the problem of road network multi-scale matching, a multi-scale road matching method under the constraint of road mesh of small-scale data has been proposed. First, two road meshes with different scale data are constructed; Secondly, under the constraint of the small-scale road mesh, the composite mesh composed of several road meshes in the large-scale road is extracted, and the mesh matching with the small-scale road mesh is completed; Then, many-to-many matching of road meshes with different scales is realized; finally, the matching relationship between composite mesh and small-scale road mesh is transformed into the matching between multi-scale road mesh boundary roads and internal roads, and the matching of the whole road network is completed. The experimental results show that this method can better realize the matching of multi-scale road network.
Copyright © by EnPress Publisher. All rights reserved.