Magnetic graphene oxide nanocomposites (M-GO) were successfully synthesized by partial reduction co-precipitation method and used for removal of Sr(II) and Cs(I) ions from aqueous solutions. The structures and properties of the M-GO was investigated by X-ray diffraction, Fourier transformed infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, scanning electron microscopy, vibrating sample magnetometer (VSM) and N2-BET measurements. It is found that M-GO has 2.103 mg/g and 142.070 mg/g adsorption capacities for Sr(II) and Cs(I) ions, respectively. The adsorption isotherm matches well with the Freundlich for Sr(II) and Dubinin–Radushkevich model for Cs(I) and kinetic analysis suggests that the adsorption process is pseudo-second-ordered.
A large number of people of the fringe areas of Sundarban enter into the forests every year and encounter with the tigers simply for their livelihood. This study attempts to examine the extent and impact of human-animal conflicts in the Sundarban Reserve Forest (SRF) area in West Bengal, India. An intensive study of the data of the victims (both death and injury) between 1999 and 2014 reveals that, fishermen crab collector, honey collectors and woodcutters are generally victimized by the tiger attack. Pre monsoon period (April to June) and early winter period (Jan to March) are noted for the two-peak periods for casualties. Maximum casualty occurs between 8-10 am, and 2-4 pm. Jhilla (21.1%), Pirkhali (19.72 %), Chandkhali (11.72%), and Arbesi (9.35%) are the four most vulnerable forest blocks accounting more than 60 per cent occurrence of incidences. 67.24 per cent of the tiger attack victims were residents of Gosaba followed by Hingalganja (15%) and Basanti, (9.76%). The vulnerability rating puts the risk of tiger attack to 0.88 for every 10,000 residents of Gosaba block followed by 0.33 at Hingalganj Block and 0.11 at Bansanti Block. The majority of the victims (68%) were found to be males, aged between 30 and 50 years.
The cultivation of sugar beet (Beta vulgaris L.) for table or horticultural purposes is largely carried out in the conventional way which is characterized by intense mechanization causing soil degradation and high labor costs. New cultivation techniques are being employed in the production of vegetables aiming to ensure improvements in environmental and economic conditions, such as the no-till farming system. Thus, the objective of this work was to evaluate the vegetable classification and physicochemical characteristics of beets from different corn planting densities. The experiment was conducted in the period from October 2018 to June 2019 in the municipality of Nova Laranjeiras (PR). Corn was used as a cover plant and the vegetable used was beet cultivar Early Wonder Tall Top. The experimental design used was in interspersed blocks in unifactorial scheme (corn densities 40, 60, 80, 100 thousand plants/ha and control) with four blocks, with plots 3.60 m long and 1.20 m wide. The parameters evaluated 60 days after planting were: commercial classification (class, group, subgroup, category), length, diameter, mass, pulp firmness, soluble solids, titratable acidity, pH and ratio, phenolic compounds. Of which the variables that were not significant at 0.5 probability were length, category (defects), firmness, subgroup (flesh color), soluble solids and phenolic compounds. It is concluded that high densities of corn as mulch for SPDH of sugar beet crop negatively affect the grade and physicochemical characterization of the products.
China’s annual government work report (GWR) contains terms with Chinese characteristics (TCC), reflecting unique policy frameworks. Translating these terms into English poses significant challenges due to cultural disparities between China and the West. This paper examines the English translation methods used for such terms, using the 2020 GWR as a case study, aiming to provide valuable insights for future translation practices.
Branched micro/nano Se was prepared by the redaction of L-Cys•HCl and H2SeO3 in hydrothermal method, as β-CD was used as soft template. The structures of products were characterized by SEM, TEM and XRD. Some important factors influencing the morphology of products were studied and discussed, including the amounts of soft template, the reaction temperature and the reaction time. The results showed that external causes had a potent effect on the morphology of micro/nano Se. The uniform branched micro/nano Se prepared under the optimal reaction condition was rhombohedral trigonal selenium t-Se0, but its crystallinity degree was low.
Copyright © by EnPress Publisher. All rights reserved.