Employee retention is a critical concern for organizations in today’s dynamic labor market. This paper introduces a novel framework, integrating “absolute potential of the employee” and “risk associated with leaving the employee”, to address this challenge. Findings from the study suggest that this framework can effectively assist organizations in strategizing retention techniques. The research methodology employed an exploratory research design and collected data from 576 employees across various sectors. The results indicate significant implications for organizational risk assessment and employee retention strategies.
The presence of a crisis has consistently been an inherent aspect of the Supply Chain, mostly as a result of the substantial number of stakeholders involved and the intricate dynamics of their relationships. The objective of this study is to assess the potential of Big Data as a tool for planning risk management in Supply Chain crises. Specifically, it focuses on using computational analysis and modeling to quantitatively analyze financial risks. The “Web of Science—Elsevier” database was employed to fulfill the aims of this work by identifying relevant papers for the investigation. The data were inputted into VOS viewer, a software application used to construct and visualize bibliometric networks for subsequent research. Data processing indicates a significant rise in the quantity of publications and citations related to the topic over the past five years. Moreover, the study encompasses a wide variety of crisis types, with the COVID-19 pandemic being the most significant. Nevertheless, the cooperation among institutions is evidently limited. This has limited the theoretical progress of the field and may have contributed to the ambiguity in understanding the research issue.
The Organic Rankine Cycle (ORC) is an electricity generation system that uses organic fluid instead of water in the low temperature range. The Organic Rankine cycle using zeotropic working fluids has wide application potential. In this study, data mining (DM) model is used for performance analysis of organic Rankine cycle (ORC) using zeotropik working fluids R417A and R422D. Various DM models, including Linear Regression (LR), Multi-Layer Perceptron (MLP), M5 Rules, M5 Model Tree, Random Committee (RC), and Decision Tree (DT) models are used. The MLP model emerged as the most effective approach for predicting the thermal efficiency of both R417A and R422D. The MLP’s predicted results closely matched the actual results obtained from the thermodynamic model using Genetron software. The Root Mean Square Error (RMSE) for the thermal efficiency was exceptionally low, at 0.0002 for R417A and 0.0003 for R422D. Additionally, the R-squared (R2) values for thermal efficiency were very high, reaching 0.9999 for R417A and R422D. The findings demonstrate the effectiveness of the DM model for complex tasks like estimating ORC thermal efficiency. This approach empowers engineers with the ability to predict thermal efficiency in organic Rankine systems with high accuracy, speed, and ease.
Micro-mobility has the potential to address first -mile challenges, improving transit accessibility and encouraging public transit usage. However, users’ acceptability of modal integration between various micro-mobility options and public transit remains largely unexplored in the literature. Our study investigates the user behavior for first-mile options, focusing on four alternatives: walking, bicycling, motorcycling, and bus, to access urban mass rapid transit (UMRT) in Hanoi, Vietnam. Based on data collected from 1380 individuals, a Nested Logit Model (NLM) was proposed to analyze the determinants of users’ acceptability under each access mode option as well as evaluate further impacts of shifts in access mode choice on vehicle-kilometer traveled and emissions. The analysis shows that the availability of access modes might increase UMRT use by 47.83%. While this increase further generates additional vehicle-kilometer traveled due to the increase in park-and-ride users, this is offset overall by the large number of motorcycle users shifting to UMRT. Under the most optimistic scenario, modal integration for transit-access trips leads to an average reduction of 17.7% in net vehicle-kilometer traveled or 14.5% in net CO2 emissions or 10.9% in NOx from private vehicles. Our findings also imply that the introduction of parking fees for bicycling- or motorcycling-access trips, while impactful, does not significantly change UMRT choice. Therefore, the pricing schemes should be a focus of parking planning surrounding stations. Finally, a number of policy suggestions for parking planning and first-mile vehicles are presented.
The current with the rapid development of Internet and new media technology, the information openness and diversity makes ideological education is facing big challenge, in accordance with the "five a three-ring four law" teaching mode,the fundamental task of implementing ideological and political education, fostering values and cultivating talents is comprehensively carried out. We are advancing the resonance of the “three classrooms” and promoting the synchronous implementation of the “four transformations”, aiming to enhance the “five capacities” of students, according to the current construction of" big education courses "concept, change education thought and idea.
Urbanization plays a crucial role in facilitating the integration of population growth, industrial development, economic expansion, and energy consumption. In this paper, we aim to examine the relationships between CO2 emissions and various factors including economic growth, urbanization, financial development, and energy consumption within Pakistan’s building sector. The study utilizes annual data spanning from 1990 to 2020. To analyze the cointegration relationship between these variables, we employ the quantile autoregressive distributed lag error correction model (QARDL-ECM). The findings of this research provide evidence supporting the presence of an asymmetric and nonlinear long-term relationship between the variables under investigation. Based on these results, we suggest the implementation of tariffs on nonrenewable energy sources and the formulation of policies that promote sustainable energy practices. By doing so, policymakers and architects can effectively contribute to minimising environmental damage. Overall, this study offers valuable insights that can assist policymakers and architects in making informed decisions to mitigate environmental harm while fostering sustainable development.
Copyright © by EnPress Publisher. All rights reserved.