Theoretically, within the diatomic model, the relative stability of most abundant boron clusters B11, B12, and B13 with planar structures in neutral, positive and negative charged-states is studied. According to the specific (per atom) binding energy criterion, B12+ (6.49 eV) is found to be the most stable boron cluster, while B11– + B13+ (5.83 eV) neutral pair is expected to present the preferable ablation channel for boron-rich solids. Obtained results would be applicable in production of boron-clusters-based nanostructured coating materials with super-properties such as lightness, hardness, conductivity, chemical inertness, neutron-absorption, etc., making them especially effective for protection against cracking, wear, corrosion, neutron- and electromagnetic-radiations, etc.
This study employs a transfer matrix, dynamic degree, stability index, and the PLUS model to analyze the spatiotemporal changes in forest land and their driving factors in Yibin City from 2000 to 2022. The results reveal the following: (1) The land use in Yibin City is predominantly characterized by cultivated land and forest land (accounting for over 95% of the total area). The area of cultivated land initially increased and then decreased, while forest land continued to decline and construction land expanded significantly. The rate of forest land loss has slowed (with the dynamic degree decreasing from −0.62% to −0.04%), and ecosystem stability has improved (the F-value increased from 2.27 to 2.9). The conversion of cultivated land to forest land is the primary driver of forest recovery, whereas the conversion of forest land to cultivated land is the main cause of reduction; (2) cultivated land is concentrated in the central and northeastern regions, while forest land is distributed in the western and southern mountainous areas. Construction land is predominantly located in urban areas and along transportation routes. Areas of forest land reduction are mainly found in the central and southern regions with rapid economic development, while areas of forest land increase are concentrated in high-altitude zones or key ecological protection areas. Stable forest land is distributed in the western and southern ecological conservation zones; (3) changes in forest land are primarily influenced by annual precipitation, elevation, and distance to rivers. Road accessibility and GDP have significant impacts, while slope, annual average temperature, and population density exert moderate influences. Distance to railways, aspect, and soil type have relatively minor effects. The findings of this study provide a scientific basis for the sustainable management of forest resources and ecological conservation in Yibin City.
This study focuses on the use of the Soil and Water Assessment Tool (SWAT) model for water budgeting and resource planning in Oued Cherraa basin. The combination of hydrological models such as SWAT with reliable meteorological data makes it possible to simulate water availability and manage water resources. In this study, the SWAT model was employed to estimate hydrological parameters in the Oued Cherra basin, utilizing meteorological data (2012–2020) sourced from the Moulouya Hydraulic Basin Agency (ABHM). The hydrology of the basin is therefore represented by point data from the Tazarhine hydrological station for the 2009–2020 period. In order to optimize the accuracy of a specific model, namely SWAT-CUP, a calibration and validation process was carried out on the aforementioned model using observed flow data. The SUFI-2 algorithm was utilized in this process, with the aim of enhancing its precision. The performance of the model was then evaluated using statistical parameters, with particular attention being given to Nash-Sutcliffe efficiency (NSE) and coefficient of determination (R2). The NSE values for the study were 0.58 for calibration and 0.60 for validation, while the corresponding R2 values were 0.66 and 0.63. The study examined 16 hydrological parameters for Oued Cherra, determining that evapotranspiration accounted for 89% of the annual rainfall, while surface runoff constituted only 6%. It also showed that groundwater recharge was pretty much negligible. This emphasized how important it is to manage water resources effectively. The calibrated SWAT model replicated flow patterns pretty well, which gave us some valuable insights into the water balance and availability. The study’s primary conclusions were that surface water is limited and that shallow aquifers are a really important source of water storage, especially for irrigation during droughts.
This study investigated the students’ perceptions of a self-paced fitness program that is integrated with SitFit, a fitness tracker that measures body inclination during sit-up exercises, and their acceptance of digital innovation in physical education. The data was gathered from a survey of 1001 Thai undergraduates. Results revealed that attitudes toward using the technology and the perceived ease of use were important predictors of behavioral intention to use the sit-up fitness tracker. consistent with previous TAM studies. Subsequently, SitFit was developed based on exercise principles and expert advice to enable users to exercise more effectively while reducing injury risk.
The present research is on the propagation of Rayleigh waves in a homogenous thermoelastic solid half-space by considering the compact form of six different theories of thermoelasticity. The medium is subjected to an insulated boundary surface that is free from normal stress, tangential stress, and a temperature gradient normal to the surface. After developing a mathematical model, a dispersion equation is obtained with irrational terms. To apply the algebraic method, this equation must be converted into a rational polynomial equation. From this, only those roots are filtered out, which has satisfied both of the above equations for the propagation of waves decaying with depth. With the help of these roots, different characteristics are computed numerically, like phase velocity, attenuation coefficient, and path of particles. Various particular cases are compared graphically by using phase velocity and attenuation coefficient. The elliptic path of surface particles in Rayleigh wave propagation is also presented for the different theories using physical constants of copper material for different depths and thermal conductivity.
Objective: To investigate the value of differential diagnosis of hepatocellular carcinoma (HCC) and cirrhotic nodules via radiomics models based on magnetic resonance images. Background: This study is to distinguish hepatocellular carcinoma and cirrhotic nodules using MR-radiomics features extracted from four different phases of MRI images, concluded T1WI, T2WI, T2 SPIR and delay phase of contrast MRI. Methods: In this study, the four kind of magnetic resonance images of 23 patients with hepatocellular carcinoma (HCC) were collected. Among them, 12 patients with liver cirrhosis were used to obtain cirrhotic nodules (CN). The dataset was used to extract MR-radiomics features from regions of interest (ROI). The statistical methods of MRradiomics features could distinguish HCC and CN. And the ability of radiomics features between HCC and CN was estimated by receiver operating characteristic curve (ROC). Results: A total of 424 radiomics features were extracted from four kind of magnetic resonance images. 86 features in delay phase of contrast MRI,86 features in spir phase of T2WI,86 features in T1WI and 88 features in T2WI showed statistical difference (p < 0.05). Among them, the area under the curves (AUC) of these features larger than 0.85 were 58 features in delay phase of contrast MRI, 54 features in spir phase of T2WI, 62 features in T1WI and 57 features in T2WI. Conclusions: Radiomics features extracted from MRI images have the potential to distinguish HCC and CN.
Copyright © by EnPress Publisher. All rights reserved.