This paper investigates the transformative role of Artificial Intelligence (AI) in enhancing infrastructure governance and economic outcomes. Through a bibliometric analysis spanning more than two decades of research from 2000 to 2024, the study examines global trends in AI applications within infrastructure projects. The analysis reveals significant research themes across diverse sectors, including urban development, healthcare, and environmental management, highlighting the broad relevance of AI technologies. In urban development, the integration of AI and Internet of Things (IoT) technologies is advancing smart city initiatives by improving infrastructure systems through enhanced data-driven decision-making. In healthcare, AI is revolutionizing patient care, improving diagnostic accuracy, and optimizing treatment strategies. Environmental management is benefiting from AI’s potential to monitor and conserve natural resources, contributing to sustainability and crisis management efforts. The study also explores the synergy between AI and blockchain technology, emphasizing its role in ensuring data security, transparency, and efficiency in various applications. The findings underscore the importance of a multidisciplinary approach in AI research and implementation, advocating for ethical considerations and strong governance frameworks to harness AI’s full potential responsibly.
With the rapid development of artificial intelligence (AI) technology, its application in the field of auditing has gained increasing attention. This paper explores the application of AI technology in audit risk assessment and control (ARAC), aiming to improve audit efficiency and effectiveness. First, the paper introduces the basic concepts of AI technology and its application background in the auditing field. Then, it provides a detailed analysis of the specific applications of AI technology in audit risk assessment and control, including data analysis, risk prediction, automated auditing, continuous monitoring, intelligent decision support, and compliance checks. Finally, the paper discusses the challenges and opportunities of AI technology in audit risk assessment and control, as well as future research directions.
The purpose of the study was to examine the role of personalization in motivating senior citizens to use AI driven fitness apps. Vroom’s expectancy theory of motivation was applied to examine the motivation of senior citizens. The responses from participants were collected through structured interviews. The participants belonged to South Asian origin belonging to India, Bangladesh, Nepal and Bhutan. The authors adopted a content analysis approach where the gathered interview responses were coded in the context of elements of Vroom’s theory. The findings of the study indicated that a highly personalized approach in the context of motivation, expectancy, instrumentality and valence will motivate senior citizens to use AI based fitness apps. The study contributes to the personalization of AI fitness apps for senior citizens.
The rapid advancement of information and communication technology has greatly facilitated access to information across various sectors, including healthcare services. This digital transformation demands enhanced knowledge and skills among healthcare providers, particularly in comprehensive midwifery care. However, midwives in rural areas face numerous challenges such as limited resources, cultural factors, knowledge disparities, geographic conditions, and technological adoption. This research aims to evaluate the impact of AI utilization on midwives’ knowledge and behavior to optimize the implementation of healthcare services in accordance with Delima Midwife Service standards in rural settings. The analysis encompasses competencies, characteristics, information systems, learning processes, and health examinations conducted by midwives in adopting AI. The research methodology employs a cross-sectional approach involving 413 rural midwives selected proportionally. Results from Partial Least Squares Structural Equation Modeling indicate that all reflective evaluation variables meet the required criteria. Fornell-Larcker criterion demonstrates that the square root of AVE is greater than other variables. The primary findings reveal that information systems (0.029) and midwives’ competencies (0.033) significantly influence AI utilization. Furthermore, midwives’ competencies (0.002), characteristics (0.031), and AI utilization (0.011) also significantly impact midwives’ knowledge and behavior. Midwives’ characteristics also significantly affect their competencies (0.000), while midwives’ learning influences health examinations (0.000). Midwives’ knowledge and behavior affect the transformation of healthcare services in rural midwifery (0.022). The model fit results in a value of 0.097, empirically supporting the explanation of relationships among variables in the model and meeting the established linearity test.
Amidst an upsurge in the quantity of delinquent loans, the financial industry is experiencing a fundamental transformation in the approaches utilised for debt recovery. The debt collection process is presently undergoing automation and improvement through the utilisation of Artificial Intelligence (AI), an emergent technology that holds the potential to revolutionise this sector. By leveraging machine learning, natural language processing, and predictive analytics, automated debt recovery systems analyse vast quantities of data, generate forecasts regarding the likelihood of recovery, and streamline operational processes. Debt collection systems powered by AI are anticipated to be compliant, precise, and effective. On the other hand, conventional approaches are linked to increasing expenditures and inefficiencies in operations. These solutions facilitate efficient resource allocation, customised communication, and rapid data analysis, all while minimising the need for human intervention. Significant progress has been made in data analytics, predictive modelling, and decision-making through the application of artificial intelligence (AI) in debt recovery; this has the potential to revolutionize the financial sector’s approach to debt management. The findings of the research underscore the criticality of artificial intelligence (AI) in attaining efficacy and precision, in addition to the imperative of a data-centric framework to fundamentally reshape approaches to debt collection. In conclusion, artificial intelligence possesses the capacity to profoundly transform the existing approaches utilized in debt management, thereby guaranteeing financial institutions’ sustained profitability and efficacy. The application of machine learning methodologies, including predictive modelling and logistic regression, signifies the potential of the system.
Copyright © by EnPress Publisher. All rights reserved.