Projects implemented under life cycle contracts have become increasingly common in recent years to ensure the quality of construction and maintenance of energy infrastructure facilities. A key parameter for energy facility construction projects implemented under life cycle contracts is their duration and deadlines. Therefore, the systematic identification, monitoring, and comprehensive assessment of risks affecting the timing of work on the design and construction is an urgent practical task. The purpose of this work is to study the strength of the influence of various risks on the duration of a project implemented on the terms of a life cycle contract. The use of the expert assessment method allows for identifying the most likely risks for the design and construction phases, as well as determining the ranges of deviations from the baseline indicator. Using the obtained expert evaluations, a model reflecting the range and the most probable duration of the design and construction works under the influence of risk events was built by the Monte-Carlo statistical method. The results obtained allow monitoring and promptly detecting deviations in the actual duration of work from the basic deadlines set in the life cycle contract. This will give an opportunity to accurately respond to emerging risks and build a mutually beneficial relationship between the parties to life cycle contracts.
Providing and using energy efficiently is hampered by concerns about the environment and the unpredictability of fossil fuel prices and quantities. To address these issues, energy planning is a crucial tool. The aim of the study was to prioritize renewable energy options for use in Mae Sariang’s microgrid using an analytical hierarchy process (AHP) to produce electricity. A prioritization exercise involved the use of questionnaire surveys to involve five expert groups with varying backgrounds in Thailand’s renewable energy sector. We looked at five primary criteria. The following four combinations were suggested: (1) Grid + Battery Energy Storage System (BESS); (2) Grid + BESS + Solar Photovoltaic (PV); (3) Grid + Diesel Generator (DG) + PV; and (4) Grid + DG + Hydro + PV. To meet demand for electricity, each option has the capacity to produce at least 6 MW of power. The findings indicated that production (24.7%) is the most significant criterion, closely followed by economics (24.2%), technology (18.5%), social and environmental (18.1%), and structure (14.5%). Option II is strongly advised in terms of economic and structural criteria, while option I has a considerable advantage in terms of production criteria and the impact on society and the environment. The preferences of options I, IV, and III were ranked, with option II being the most preferred choice out of the four.
Transitioning to a green economy is a global concern, considered a pathway to sustainable development. This paper aims to investigate the effect of the transition into a green economy on Vietnam’s sustainable development and its two economic and environmental dimensions, with consideration of several essential issues including renewable energy, technological innovation, natural resource rents (oils, forest, and minerals), foreign direct investment, and trade. This paper utilizes data from 1996 to 2020 and then applies the autoregressive distributed lag (ARDL) method for analysis. The results conclude that renewable energy is a driving key to reducing environmental degradation, but it hampers economic growth, while the contrast occurs with technology. Our results emphasize the dependence on non-renewable energy, whereas the innovation of technology does not show a green orientation in Vietnam. Furthermore, there is a lack of sustainability in the effect of natural resource rents, foreign direct investment, and trade. Overall, the transition into a green economy in Vietnam does not illustrate the sustainable orientation. The findings of this research provide empirical evidence to clarify the relationship between this transition and its driving factor, with sustainable development and the two economic environment dimensions. In addition, this study will bring worthwhile implications for the policymakers and scholars on whether the transition to a green economy fulfills the orientation towards sustainability, then enhancing the economy's efficiency to achieve green growth, following the pathway to sustainable development.
The need for forest products, agricultural expansion, and dependency on biomass for the household energy source has largely influenced Ethiopia’s forest resources. Consequently, the country lost its forest resources to less than 6% until the millennium. In this study, quantitative and qualitative historical data analysis was employed to understand the socioeconomic benefits of large dam construction to Ethiopia and downstream countries. Moreover, remotely sensed data was also used to analyze the trends of vegetation cover change in the Nile catchment since the commencement of the dam; focusing on areas where there are high settlement and urban areas. It was identified that Ethiopia has one of the lowest electricity consumption per capita in Africa; about 91% of the source of household energy supply depends on fuelwood today and more than 55.7% of the population does not have access to electricity. The normalized difference vegetation index result shows an increment of vegetation area in the Nile catchment and a reduction of no vegetation area from 2011–2021 by 37.1%; which is directly related to the protection of the dam catchment for its sustainability in the last decade. The hydroelectric dam construction has prospects of multi-benefit to Ethiopia and downstream countries either through the direct benefit of hydropower energy production, related socioeconomic values, and reducing risks of destructive flood from Ethiopian highlands. Generally, it explains the reason why to not say ‘No’ to the reservoir as it is an ever more vital tool for fulfilling growing energy demand and supporting ecological stability.
This article using thematic and content analysis investigated the contribution of innovation in achieving sustainable economic development. The objective of the bibliometric research was to assess the literature on this subject it identified research trends, ideas, and authors who contributed to this area so that future research and policy directions could be suggested. The data was derived from the Scopus database and was extracted between January 2020 and February 2024 by applying inclusion and exclusion criteria. The Scopus database search yielded 66 articles, published between 2020 and February 2024. Scopus analytics and Microsoft Excel were used for descriptive analysis and VOS Viewer software was used for network visualization of keywords. The descriptive analysis showed the trajectory of research, the prolific authors, their publication outlets, authors affiliation, and county of origin of the documents. The prolific visualization showed five clusters: red, green, blue, purple, and yellow. The main clusters are economic development, alternative energy, sustainable development, and innovation. This research showed where consideration should be given to drive sustainability and sustainable economic development. This research outcome will assist government agencies, corporations, and non-profit organizations in planning appropriate action and policies to support innovative and renewable energy initiatives so that participation in those fields could enhance the opportunity to achieve sustainable economic development.
Copyright © by EnPress Publisher. All rights reserved.