In order to promote the application of noise map in high-speed railway noise management, the high-speed railway noise map drawing technology based on the combination of noise prediction model and geographic information system (GIS) is studied. Firstly, according to the distribution characteristics of noise sources and line structure characteristics of high-speed railway, the prediction model of multi equivalent sound sources and the calculation method of sound barrier insertion loss of high-speed railway are optimized; secondly, a three-dimensional geographic information model of a high-speed railway is built in GIS software, and the railway noise prediction technology based on the model is developed again; then, the noise of discrete nodes is calculated, and the continuous noise distribution map is drawn by spatial interpolation. The research results show that the comparison error between the noise map of a high-speed railway drawn by this technology and the measured results is less than 1 dB (A), which verifies the accuracy and practicality of the high-speed railway noise map, and can be used as a reference for the railway noise management department to formulate noise control countermeasures.
Integrated Resource Management plays a crucial role in sustainable development by ensuring efficient allocation and utilization of natural resources. Remote Sensing (RS) and Geographic Information System (GIS) have emerged as powerful tools for collecting, analyzing, and managing spatial data, enabling comprehensive and integrated decision-making processes. This review article uniquely focuses on Integrated Resource Management (IRM) and its role in sustainable development. It specifically examines the application of RS and GIS in IRM across various resource management domains. The article stands out for its comprehensive coverage of the benefits, challenges, and future directions of this integrated approach.
Although dykes are a predominant and widely distributed phenomenon in S-Algeria, N-Mali and N-Niger, a systematic, standardized inventory of dykes covering these areas has not been published so far. Remote sensing and geo information system (GIS) tools offer an opportunity for such an inventory. This inventory is not only of interest for the mining industry as many dykes are related to mineral occurrence of economic value, but also for hydrogeologic investigations (dykes can form barriers for groundwater flow). Surface-near dykes, major fault zones, volcanic and structural features were digitized based on Landsat 8 and 9, Sentinel 2, Sentinel 1 and ALOS PALSAR data. High resolution images of World Imagery files/ESRI and Bing Maps Aerial/Microsoft were included into the evaluations. More than 14,000 dykes were digitized and analyzed. The evaluations of satellite images allow a geomorphologic differentiation of types of dykes and the description of their characteristics such as dyke swarms or ring dykes. Dykes are tracing zones of weakness like faults and zones with higher geomechanically strain. Dyke density calculations were carried out in ArcGIS to support the detection of dyke concentrations as stress indicator. Thus, when occurring concentrated, they might indicate stressed areas where further magmatic and earthquake activity might potentially happen in future.
Land use or land cover (LU/LC) mapping serves as a kind of basic information for land resource study. Detecting and analyzing the quantitative changes along the earth’s surface has become necessary and advantageous because it can result in proper planning, which would ultimately result in improvement in infrastructure development, economic and industrial growth. The LU/LC pattern in Madurai City, Tamil Nadu, has undergone a significant change over the past two decades due to accelerated urbanization. In this study, LU/LC change dynamics were investigated by the combined use of satellite remote sensing and geographical information system. To understand the LU/LC change in Madurai City, different land use categories and their spatial as well as temporal variability have been studied over a period of seven years (1999-2006), by analyzing Landsat images for the years 1999 and 2006 respectively with the help of ArcGIS 9.3 and ERDAS Imagine 9.1 software. This results show that geospatial technology is able to effectively capture the spatio-temporal trend of the landscape patterns associated with urbanization in this region.
The design of effective flood risk mitigation strategies and their subsequent implementation is crucial for sustainable development in mountain areas. The assessment of the dynamic evolution of flood risk is the pillar of any subsequent planning process that is targeted at a reduction of the expected adverse consequences of the hazard impact. This study focuses on riverbed cities, aiming to analyze flood occurrences and their influencing factors. Through an extensive literature review, five key criteria commonly associated with flood events were identified: slope height, distance from rivers, topographic index, and runoff height. Utilizing the network analysis process within Super Decision software, these factors were weighted, and a final flood risk map was generated using the simple weighted sum method. 75% of the data was used for training, and 25% of it was used for testing. Additionally, vegetation changes were assessed using Landsat imagery from 2000 and 2022 and the normalized difference vegetation index (NDVI). The focus of this research is Qirokarzin city as a case study of riverbed cities, situated in Fars province, with Qir city serving as its central hub. Key rivers in Qirokarzin city include the Qara Aghaj River, traversing the plain from north to south; the primary Mubarak Abad River, originating from the east; and the Dutulghaz River, which enters the eastern part of the plain from the southwest of Qir, contributing to plain nourishment during flood events. The innovation of this paper is that along with the objective to produce a reliable delineation of hazard zones, a functional distinction between the loading and the response system (LS and RS, respectively) is made. Results indicate the topographic index as the most influential criterion, delineating Qirokarzin city into five flood risk zones: very low, low, moderate, high, and very high. Notably, a substantial portion of Qirokarzin city (1849.8 square kilometers, 8.54% of the area) falls within high- to very-high flood risk zones. Weighting analysis reveals that the topographic humidity index and runoff height are the most influential criteria, with weights of 0.27 and 0.229, respectively. Conversely, the height criterion carries the least weight at 0.122. Notably, 46.7% of the study area exhibits high flood intensity, potentially attributed to variations in elevation and runoff height. Flood potential findings show that the middle class covers 32.3%, indicating moderate flood risk due to changes in elevation and runoff height. The low-level risk is observed sporadically from the east to the west of the study area, comprising 12.4%. Analysis of vegetation changes revealed a significant decline in forest and pasture cover despite agricultural and horticultural development, exacerbating flood susceptibility.
Copyright © by EnPress Publisher. All rights reserved.