In the current context of China’s vigorous development of its high-speed rail (HSR) network to accelerate the realization of connectivity, which is the aim of the “Belt and Road” initiative, it is crucial to study how the specific opening of HSR enhances enterprise human capital investment efficiency. Using a multiple-time-point difference-in-differences (DID) regression model, we empirically study data from listed Chinese companies. An HSR opening can promote the efficiency of an enterprise’s human capital investment. We further explore the relationship between HSR and a company’s human capital investment, by considering the moderating effects of firm property rights and foreign shareholding. Our findings indicate that these factors can enhance the impact of HSR on the efficiency of firms’ investments in human capital. Finally, to ensure the reliability of our experimental findings, we employed a combination of propensity score matching and the DID methodology. The findings of this study offer empirical evidence that can inform enterprise management strategies and provide valuable insights for policymakers seeking to promote economic growth.
This study considers the relationship between investment in the manufacturing and processing industries and economic growth in Vietnam. This study applies an autoregressive distributed lag (ARDL) model to reassess the long- and short-term relationships between industrial investment and economic growth from 1998 to 2023. It has been found that in both the long and short term, investments in this sector have a positive and significant effect on economic growth. The results further show that labor negatively affects growth in the long run, but is favorable in the short run. The verdict for the role of exports is that more evidence is required before any conclusive analysis can be conducted. Reinvestment in the manufacturing and processing industries for further economic growth is evident in the foregoing analysis. On the other hand, this research provides insight into the optimization of the utilization of resources and future sustainability by the government.
Papua, one of the provinces in Indonesia, is recognized for its limited infrastructure and high poverty rates. This limitation undoubtedly emphasizes the government’s special attention toward augmenting foreign and domestic investments by expanding industrial sectors to absorb more labor, thereby aiming to enhance the region’s economic performance. The focus of the study seeks to assess the extent to which foreign and domestic investments, industrial employment, and the proliferation of industries in Papua contribute to increasing the Gross Development Product (GDP) and reducing poverty. By employing secondary data from 2016 to 2022 and utilizing the Regression Data Panel method, it encompasses 29 districts. The findings reveal that domestic investment, employment in the industrial sector, and the number of industries significantly influence poverty rates. However, as conclusion, foreign investment, surprisingly, demonstrates no substantial impact on economic performance. This unexpected result might be attributed to issues linked with the inadequate quality of financial performance, which doesn’t align with the available investment funds. Utilizing the analytical network process (ANP), the study outlines two primary strategies. The first involves prioritizing investment expansion by focusing on both domestic and foreign investments. The second strategy emphasizes industrial revitalization through augmenting the number of industries and enhancing labor participation in the industrial sector.
The current study examines the impact that technological innovation, foreign direct investment, economic growth, and globalization have on tourism in top 10 most popular tourist destinations in the world. The information on the number of tourists, foreign direct investment, growth in gross domestic product, GFCF, use of FFE, and total energy consumption were extracted from the World Development Indicators. The United Nations Conference on Trade and Development (UNCTAD) database was used for collecting the statistics about technological innovation. The source ETH Zurich has been utilized to gather panel data for the time period 2008 to 2022 to calculate the KOF Index of Globalization. Theoretically, FDI and Economic growth are the endogenous variables for the Tourism model. Whereas, TI, Glob, Energy Consumption, and GFCF are the exogenous variables. Hence, the analysis is based on the System Equation—Simultaneous equations, after checking identification that confirms the problem of simultaneity in system of 3 equations. The empirical outcomes suggest that TI, FDI, globalization index, GDP growth, and energy consumption are the most important factors that contribute to an increase in tourism. Likewise FDI as the endogenous variable is favorably impacted by globalization, technological innovation, fossil fuel energy consumption, gross fixed capital formation, and tourism. Nevertheless, the coefficient of GFCF is only insignificant in the study. While, globalization, TI, and FFE are also favorably affecting the FDI. GDP growth is the second endogenous variable in this research, and it is positively influenced by globalization, FDI, and tourism in the case of the top 10 nations that are most frequently visited by tourists.
Copyright © by EnPress Publisher. All rights reserved.