Hazards are the primary cause of occupational accidents, as well as occupational safety and health issues. Therefore, identifying potential hazards is critical to reducing the consequences of accidents. Risk assessment is a widely employed hazard analysis method that mitigates and monitors potential hazards in our everyday lives and occupational environments. Risk assessment and hazard analysis are observing, collecting data, and generating a written report. During this process, safety engineers manually and periodically control, identify, and assess potential hazards and risks. Utilizing a mobile application as a tool might significantly decrease the time and paperwork involved in this process. This paper explains the sequential processes involved in developing a mobile application designed for hazard analysis for safety engineers. This study comprehensively discusses creating and integrating mobile application features for hazard analysis, adhering to the Unified Modeling Language (UML) approach. The mobile application was developed by implementing a 10-step approach. Safety engineers from the region were interviewed to extract the knowledge and opinions of experts regarding the application’s effectiveness, requirements, and features. These interview results are used during the requirement gathering phase of the mobile application design and development. Data collection was facilitated by utilizing voice notes, photos, and videos, enabling users to engage in a more convenient alternative to manual note-taking with this mobile application. The mobile application will automatically generate a report once the safety engineer completes the risk assessment.
This study explores the integration of data mining, customer relationship management (CRM), and strategic management to enhance the understanding of customer behavior and drive revenue growth. The main goal is the use of application of data mining techniques in customer analytics, focusing on the Extended RFM (Recency, Frequency, Monetary Value and count day) model within the context of online retailing. The Extended RFM model enhances traditional RFM analysis by incorporating customer demographics and psychographics to segment customers more effectively based on their purchasing patterns. The study further investigates the integration of the BCG (Boston Consulting Group) matrix with the Extended RFM model to provide a strategic view of customer purchase behavior in product portfolio management. By analyzing online retail customer data, this research identifies distinct customer segments and their preferences, which can inform targeted marketing strategies and personalized customer experiences. The integration of the BCG matrix allows for a nuanced understanding of which segments are inclined to purchase from different categories such as “stars” or “cash cows,” enabling businesses to align marketing efforts with customer tendencies. The findings suggest that leveraging the Extended RFM model in conjunction with the BCG matrix can lead to increased customer satisfaction, loyalty, and informed decision-making for product development and resource allocation, thereby driving growth in the competitive online retail sector. The findings are expected to contribute to the field of Infrastructure Finance by providing actionable insights for firms to refine their strategic policies in CRM.
This research delves into the urgent requirement for innovative agricultural methodologies amid growing concerns over sustainable development and food security. By employing machine learning strategies, particularly focusing on non-parametric learning algorithms, we explore the assessment of soil suitability for agricultural use under conditions of drought stress. Through the detailed examination of varied datasets, which include parameters like soil toxicity, terrain characteristics, and quality scores, our study offers new insights into the complexities of predicting soil suitability for crops. Our findings underline the effectiveness of various machine learning models, with the decision tree approach standing out for its accuracy, despite the need for comprehensive data gathering. Moreover, the research emphasizes the promise of merging machine learning techniques with conventional practices in soil science, paving the way for novel contributions to agricultural studies and practical implementations.
The incorporation of artificial intelligence (AI) into language education has created new opportunities for improving the instruction and acquisition of Chinese characters. Nevertheless, the cognitive difficulties linked to the acquisition of Chinese characters, such as their intricate visual features and lack of clear meaning, necessitate thoughtful deliberation when developing AI-supported learning interventions. The objective of this project is to explore the capacity of a collaborative method between humans and machines in teaching Chinese characters, utilising the advantages of both human expertise and AI technology. We specifically investigate the utilisation of ChatGPT, a substantial language model, for the creation of instructional materials and evaluation methods aimed at teaching Chinese characters to individuals who are not native speakers. The study utilises a mixed-methods approach, which involves both qualitative examination of lesson plans created by ChatGPT and quantitative evaluation of student learning outcomes. The results indicate that the suggested framework for human-machine collaboration can successfully tackle the cognitive difficulties associated with learning Chinese characters, resulting in enhanced learner involvement and performance. Nevertheless, the research also emphasises the constraints of AI-generated material and the significance of human involvement in guaranteeing the accuracy and dependability of educational interventions. This research adds to the expanding collection of literature on AI-assisted language learning and offers practical insights for educators and instructional designers who aim to use AI tools into Chinese language curriculum. The results emphasise the necessity of employing a multi-disciplinary strategy in AI-supported language learning, incorporating knowledge from cognitive psychology, educational technology, and second language acquisition.
The main reason for the formation of nano-biotechnology is due to the penetration of nanotechnology in the biological field, nanotechnology research center is the study of nano-drug carrier. Nano-drug system targeted drug delivery to achieve drug release, increase the insoluble drugs and peptide drug bio-efficiency, reduce the toxicity and application of drugs and other aspects of the development of good prospects, and thus become one of the key research in recent years’ field. Synthesis and application of nanometer drug carriers this review is presented in recent years and its application to provide a comprehensive basis for the treatment process. Describes the nature and preparation of nano-drug carrier methods, in recent years, people have been widely concerned by scholars. Compared with the nano-drug delivery, the general pharmaceutical cannot have to extend the role of drugs, strong efficacy, and the advantages of small drug response. Nano-materials, the specific surface area, surface activity, high catalytic efficiency, surface active center, adsorption capacity and other characteristics, which has many excellent features and new features.
Copyright © by EnPress Publisher. All rights reserved.