This paper aims to systematically analyze the current state of plastic waste legal supervision in China and to propose a vision for future governance frameworks. In recent years, along with the vigorous rise of emerging industries such as the express delivery industry and takeaway services, the consumption of plastic products has increased sharply. This trend has triggered profound reflection and high vigilance on the issue of plastic waste supervision. This trend has triggered profound reflection and acute vigilance regarding the regulation of plastic waste. Although the Chinese government has initiated multiple regulatory measures and achieved certain outcomes, from a macroscopic perspective, the issue of plastic waste pollution remains grave, and the relevant legal and regulatory system presents a complex situation with limited enforcement efficacy. Hence, it is exceptionally urgent and significant to deeply explore and formulate legislative strategies aimed at alleviating and regulating plastic waste pollution. This paper is dedicated to systematically analyzing the current state of plastic waste legal supervision from both international and domestic dimensions, and meticulously outlining the regulatory framework for plastic waste governance in China. Through the application of legal norm research methods, this paper dissects the flaws and challenges existing in the current governance mechanisms and further conducts a comparative study of the successful practices in this field in developed countries like the United States, with the intention of drawing valuable experiences. On this basis, this paper not only offers a forward-looking outlook on China’s future legislative tendencies in plastic waste pollution but also innovatively proposes a series of new insights and recommendations. These explorations aim to provide a more solid theoretical foundation and practical guidance for the governance approach to plastic waste pollution in China, promote the improvement and enhancement of the enforcement effectiveness of environmental regulations, and thereby effectively confront the global challenge of plastic pollution.
The rapid increase in the aging population has raised significant concerns about the living conditions and well-being of elderly residents in old communities. This study addresses these concerns by proposing a Sustainable Urban Renovation Assessment Model (SURAM) specifically designed to enhance elderly-friendly environments in Chongqing City. The model encompasses multiple dimensions, including the comfort of public facilities, service safety and convenience, medical travel services, infrastructure security, life service convenience, neighbor relations, ambulance aid accessibility, commercial service facilities, privacy protection, elderly care facilities and service supply, and medical and health facilities. By employing factor analysis, the study reduces the dimensionality of the 49 indicator factors, allowing for a more focused and comprehensive evaluation of the effectiveness of aging-friendly renovation efforts. The main factors identified in the proposed model include community infrastructure security, elderly comfort of community public facilities, completeness and convenience of surrounding living services, and security and convenience of elderly care services. The results reveal that the age-appropriate comfort of public facilities plays a significant role in achieving successful aging-appropriate renovation outcomes. The findings demonstrate that by addressing specific needs such as safety, accessibility, and convenience, communities can significantly improve the quality of life for elderly residents. Moreover, the application of SURAM provides actionable insights for policymakers, urban planners, and community stakeholders, guiding them in implementing targeted initiatives for sustainable and inclusive urban development.
Underground station passenger flow is large, the number of parcels carried by passengers is large and varied, and the parcels carried have an impact on the fire hazard and evacuation of the station. In order to determine the weights of the passenger luggage risk and environmental factor index system in the fire risk evaluation of underground stations in a more realistic way, an optimized and improved hierarchical analysis method for determining the judgement matrix is proposed, which improves the traditional nine-scaled method and adopts the three-scaled method for the four major categories of luggage, namely, handbags, rucksacks, portable power tools and trolley cases. The advantage of this method is that there is no need for consistency judgement in determining packages with a wide range of types and uncertain contents, thus simplifying the calculation. Meanwhile, the reasonableness and reliability of the method is verified by combining it with an actual metro station fire risk assessment system.
Sustainability in road construction projects is hindered by the extensive use of non-renewable materials, high greenhouse gas emissions, risk cost, and significant disruption to the local community. Sustainability involves economic, environmental, and social aspects (triple bottom line). However, establishing metrics to evaluate economic, environmental, and social impacts is challenging because of the different nature of these dimensions and the shortage of accepted indicators. This paper developed a comprehensive method considering all three dimensions of sustainable development: economic, environmental, and social burdens. Initially, the economic, environmental, and social impact category indicators were assessed using the Life cycle approach. After that, the Analytic Hierarchy Process (AHP) method and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) were utilized to prioritize the alternatives according to the acquired weightings and sustainable indicators. The steps of the AHP method involve forming a hierarchy, determining priorities, calculating weighting factors, examining the consistency of these assessments, and then determining global priorities/weightings. The TOPSIS method is conducted by building a normalized decision matrix, constructing the weighted normalized decision matrix, evaluating the positive and negative solutions, determining the separation measures, and calculating the relative closeness to the ideal solution. The selected alternative performs the highest Relative Closeness to the Ideal Solution. Lastly, a case study was undertaken to validate the proposed method. In three alternatives in the case study (Cement Concrete, Dense-Graded Polymer Asphalt Concrete, and Dense-Graded Asphalt Concrete), option 3 showed the most sustainable performance due to its highest Relative Closeness to the Ideal Solution. Integrating AHP and TOPSIS methods combines both strengths, including AHP’s structured approach for determining criteria weights through pairwise comparisons and TOPSIS’s ability to rank choices based on their proximity to an ideal solution.
The sea level rise under global climate change and coastal floods caused by extreme sea levels due to the high tide levels and storm surges have huge impacts on coastal society, economy, and natural environment. It has drawn great attention from global scientific researchers. This study examines the definitions and elements of coastal flooding in the general and narrow senses, and mainly focuses on the components of coastal flooding in the narrow sense. Based on the natural disaster system theory, the review systematically summarizes the progress of coastal flood research in China, and then discusses existing problems in present studies and provide future research directions with regard to this issue. It is proposed that future studies need to strengthen research on adapting to climate change in coastal areas, including studies on the risk of multi- hazards and uncertainties of hazard impacts under climate change, risk assessment of key exposure (critical infrastructure) in coastal hotspots, and cost-benefit analysis of adaptation and mitigation measures in coastal areas. Efforts to improve the resilience of coastal areas under climate change should be given more attention. The research community also should establish the mechanism of data sharing among disciplines to meet the needs of future risk assessments, so that coastal issues can be more comprehensively, systematically, and dynamically studied.
Photocatalysis, an innovative technology, holds promise for addressing industrial pollution issues across aqueous solutions, surfaces, and gaseous effluents. The efficiency of photodegradation is notably influenced by light intensity and duration, underscoring the importance of optimizing these parameters. Furthermore, temperature and pH have a significant impact on pollutant speciation, surface chemistry, and reaction kinetics; therefore, process optimization must consider these factors. Photocatalytic degradation is an effective method for treating water in environmental remediation, providing a flexible and eco-friendly way to eliminate organic contaminants from wastewater. Selectivity in photocatalytic degradation is achieved by a multidisciplinary approach that includes reaction optimization, catalyst design, and profound awareness of chemical processes. To create efficient and environmentally responsible methods for pollution removal and environmental remediation, researchers are working to improve these components.
Copyright © by EnPress Publisher. All rights reserved.