This research aimed to investigate the role of humanizing leadership in enhancing the effectiveness of change management strategies within organizations. Specifically, it focused on how humanizing leadership influences change outcomes and the extent to which organizational culture moderates this relationship. The study addressed critical questions regarding the impact of leadership behaviors, such as model vulnerability, emotional intelligence, open communication, and psychological safety on effective change management and employee performance. A quantitative approach was employed to provide a comprehensive analysis of the phenomena. Quantitative data were collected from a sample of 325 employees through surveys that measured perceptions of Humanizing leadership behaviors, organizational culture, and change outcomes. Data was analyzed by IBM SPSS 26.0. The findings revealed that humanizing leadership behaviors significantly enhances the success of change initiatives, primarily through improved employee engagement and reduced resistance. Organizational culture was found to play a moderating role, amplifying the positive effects of empathetic and inclusive leadership practices. The study provides actionable recommendations for organizational leaders and managers to foster a culture that supports humanizing leadership. By adopting leadership strategies that emphasize vulnerability, empathy, and inclusivity, organizations can enhance their adaptability and resilience against the backdrop of continuous change. These findings are particularly valuable for enhancing managerial practices and informing policy within corporate settings.
In Nigeria, deforestation has led to an unimaginable loss of genetic variation within tree populations. Regrettably, little is known about the genetic variation of many important indigenous timber species in Nigeria. More so, the specific tools to evaluate the genetic diversity of these timber species are scarce. Therefore, this study developed species-specific markers for Pterygota macrocarpa using state-of-the-art equipment. Leaf samples were collected from Akure Forest Reserve, Ondo State, Nigeria. DNA isolation, quantification, PCR amplification, gel electrophoresis, post-PCR purification, and sequencing were done following a standardized protocol. The melting temperatures (TM) of the DNA fragments range from 57.5 ℃to 60.1 ℃ for primers developed from the MatK gene and 58.7 ℃ to 60.5 ℃ for primers developed from the RuBisCo gene. The characteristics of the ten primers developed are within the range appropriate for genetic diversity assessment. These species-specific primers are therefore recommended for population evaluation of Pterygota macrocarpa in Nigeria.
Sketching on stimulus-organism-response theory, this study aims to investigate the mediating effect of environmental passion on the relationship of the environmentally specific servant leadership with employees’ green behavior. Using purposive sampling approach, the authors adopted one month time-lagged approach to collected data from 232 academic employees in higher education institutions of China. Response rate in this study is 46.40%. The partial least-structural equation modeling (PLS-SEM) analysis was conducted in the smartpls 4.0 software to test the proposed hypotheses. The current empirical findings confirm that environmentally specific servant leadership significantly positively influence employee’s environmental passion and environmental passion significantly positively affects the employee’s workplace green behaviors. This current finding offered support in favor of mediating impact of environmental passion on the “environmentally specific servant leadership-employees workplace green behaviors” relationship. To the best of authors, this study is among pioneers’ studies to investigate the integrated relationship of environmentally specific servant leadership, environmental passion and green behavior in higher education institutions context of China. Limitations and implication have been elaborated at the end.
This research examines three data mining approaches employing cost management datasets from 391 Thai contractor companies to investigate the predictive modeling of construction project failure with nine parameters. Artificial neural networks, naive bayes, and decision trees with attribute selection are some of the algorithms that were explored. In comparison to artificial neural network’s (91.33%) and naive bays’ (70.01%) accuracy rates, the decision trees with attribute selection demonstrated greater classification efficiency, registering an accuracy of 98.14%. Finally, the nine parameters include: 1) planning according to the current situation; 2) the company’s cost management strategy; 3) control and coordination from employees at different levels of the organization to survive on the basis of various uncertainties; 4) the importance of labor management factors; 5) the general status of the company, which has a significant effect on the project success; 6) the cost of procurement of the field office location; 7) the operational constraints and long-term safe work procedures; 8) the implementation of the construction system system piece by piece, using prefabricated parts; 9) dealing with the COVID-19 crisis, which is crucial for preventing project failure. The results show how advanced data mining approaches can improve cost estimation and prevent project failure, as well as how computational methods can enhance sustainability in the building industry. Although the results are encouraging, they also highlight issues including data asymmetry and the potential for overfitting in the decision tree model, necessitating careful consideration.
Copyright © by EnPress Publisher. All rights reserved.