This study examines the economic feasibility of the environment-friendly farmland use policy to improve water quality. Conventional highland farming, polluting the Han River basin in South Korea, can be converted into environment-friendly farming through land acquisition or application of pesticide-free or organic farming practices. We estimate the welfare measures of improvement in water quality and the costs of policy implementation for economic analysis. To estimate the economic benefit of improvement in water quality experienced by the residents residing in mid-and-downstream areas of the Han River, the choice experiment was employed with a pivot-style experimental design approach. In the empirical analysis, we converted the household perception for water quality grades into scientific water quality measures using Water Quality Standard to estimate the value of changes in water quality. To analyze the costs required to convert conventional highland farmlands into environment-friendly farmlands, we estimated the relevant cost of land acquisition and the subsidy necessary for farm income loss for organic agricultural practice. We find that the agri-environmental policy is economically viable, which suggests that converting conventional highland farming into environment-friendly farming would make the improvement in water quality visible.
Nigeria’s palm oil processing industry poses significant environmental pollution risks, jeopardizing the country’s ability to meet the UN’s 17 Sustainable Development Goals (SDGs) by 2030. Traditional processing methods generate palm oil mill effluent (POME), contaminating soil and shallow wells. This study investigated water samples from five locations (Edo, Akwa-Ibom, Cross River, Delta, and Imo states) with high effluent release. While some parameters met international and national standards (WHO guidelines, ASCE, NIS, and NSDWQ) others exceeded acceptable limits, detrimental to improved water quality. Results showed, pH values within acceptable ranges (6.5–8.5), high total conductivity and salinity (800–1150 µS/cm), acceptable hardness values (200–300 mg/L), nitrite concentrations (10–45 mg/L), excessive magnesium absorption (> 50 mg/L), biochemical oxygen demand (BOD) indicating significant pollution (75–290 mg/L), total dissolved solids (TDS) exceeding safe limits in four locations, total solids (TS) exceeding allowable limits for drinking water (310–845 mg/L), water quality index (WQI) values ranged from “poor” to “very poor”. POME contamination by metals like magnesium, nitrite, chloride, and sodium compromised shallow well water quality. Correlation analysis confirmed robust results, indicating strong positive correlations between conductivity and TDS (r = 0.85, p < 0.01) and pH and total hardness (r = 0.65, p < 0.05). The study emphasizes the need for environmentally friendly palm oil processing methods to mitigate pollution, ensure safe drinking water, and achieve Nigeria’s SDGs. Implementation of sustainable practices is crucial to protect public health and the environment.
Constructed wetlands have emerged as a sustainable alternative for decentralized wastewater treatment in developing countries which face challenges with urbanization and deteriorating infrastructure. This paper discusses the key factors affecting the implementation of constructed wetlands in developing countries. A case study research design was adopted, which focused on Bulawayo, Zimbabwe. A mixed-method approach was adopted for the study. Spatial analysis was conducted to identify potential sites for constructed wetlands in the city of Bulawayo. Semi structured interviews were conducted, with relevant stakeholders, such as town planners, civil engineers, NGO representatives, community leaders, and quantity surveyors. The findings reveal that political reforms, public acceptance, land availability, and funding are crucial for the successful implementation of constructed wetlands. Additionally, four sites were identified as the most favorable preliminary locations for these systems. The paper captures all the key factors relevant to the implementation of constructed wetlands (CWs) with a closer look at policy and the role it plays in the adoption of decentralized wastewater treatment systems. Formulating policy around the decentralized sanitation systems was considered imperative to the success of the systems whether in implementation or in operation. The paper adds to knowledge in the subject of sustainable wastewater treatment alternatives for developing countries. However, further research can be conducted with a different methodology to ascertain the applicability of the systems in developing urban cities considering other important aspects in the implementation of wastewater treatment systems.
Water physico-chemical parameters, such as pH and salinity, play an important role in the larval development of Aedes aegypti, the primary vector of dengue fever. although the role of these two factors is known, the interaction between pH and salinity in various aquatic habitats is still not fully understood, especially in the context of endemic areas. this study explored how the interaction between pH and salinity affects the development of Aedes aegypti larvae in dengue hemorrhagic fever (DHF) endemic areas. this study used a pure experimental design with a posttest-only control group approach. Aedes aegypti instar iv larvae were obtained from eggs collected in north kolaka regency, a dhf endemic area. the independent variables tested were pH (6 and 8) and salinity (0.4 gr/L and 0.6 gr/L), with the control group using pH 7 and no salinity. a two-way anova test was used to evaluate the interaction between pH and salinity, followed by tukey’s hsd post-hoc test to compare treatment groups. the results showed that, independently, pH and salinity had no significant effect on larval survival. however, the interaction between the two variables had a significant effect (p < 0.001). the combination of pH 8 and salinity 0.4 gr/L resulted in the highest survival rate, while pH 6 and salinity 0.6 gr/L caused a significant decrease in larval survival. the combination of alkaline pH (pH 8) and low salinity (0.4 gr/L) is the optimal condition for Aedes aegypti larval survival. the results of this study highlight the importance of considering the interaction between pH and salinity in environmental-based vector control strategies in endemic areas. further research is needed to explore other factors, such as aquatic microbiota and environmental variations, that may affect mosquito larval development.
The paper deals with the issues of the influence of forest cover on the average annual runoff of rivers in the Pripyat River basin. In the study area, under the influence of solar radiation, the temperature of the air and the soil surface increases, evaporation from the water surface also increases, and the moisture content of the upper layers of the soil decreases. In general, with an increase in forest cover, the annual layer of the runoff of the studied rivers increases, as well as with an increase in the amount of precipitation (in contrast to the runoff of short-term floods). However, with a forest cover of more than 20%–30% and a relatively small amount of precipitation, the runoff decreases, which is associated with the retention of part of the precipitation by the forest cover. With a large amount of precipitation and low forest cover, the runoff also decreases, which is probably due to the loss of precipitation water for evaporation, etc. The conducted studies show that, just as the forest affects water resources, the flow of moisture to watersheds also affects the state of forest systems. Moreover, this interaction is expressed by evaporation from forests. Under influence of change of a climate growth of evaporation is observed.
Copyright © by EnPress Publisher. All rights reserved.