This study assesses Vietnam’s state-level implementation of artificial intelligence (AI) technology and analyses the government’s efforts to encourage AI implementation by focusing on the National Strategy on AI Development Program. This study emphasizes the possibility of implementing AI at the state level in Vietnam and the importance of conducting continuous reviews and enhancements to achieve sustainable and inclusive AI growth. Impact evaluations were conducted in public organizations alone, and implication evaluations were considered optional. AI impact assessments were constrained by societal norms that necessitated establishing relationships among findings. There is a lack of official information regarding the positive impact of Vietnam’s AI policy on the development of AI infrastructure, research, and talent pools. The study’s findings highlight the necessity of facilitating extensive AI legislation, and strengthening international cooperation. The study concludes with the following recommendations for improving Vietnam’s AI policy: implementing a strong AI governance structure and supporting AI education and awareness.
With the rapid increase in electric bicycle (e-bikes) use, the rate of associated traffic accidents has also escalated. Prior studies have extensively examined e-bike riders’ injury risks, yet there is a limited understanding of how their behavior contributes to these accidents. This study aims to explore the relationship between e-bike riders’ risk-taking behaviors and the incidence of traffic accidents, and to propose targeted safety measures based on these insights. Utilizing a mixed-methods approach, this research integrates quantitative data from traffic accident reports and qualitative observations from naturalistic studies. The study employs a binary logistic regression model to analyze risk factors and uses observational data to substantiate the model findings. The analysis reveals that assertive driving behaviors among e-bike riders, such as running red lights and speeding, significantly contribute to the high rate of accidents. Moreover, the lack of protective gear and inadequate safety training are identified as critical factors increasing the risk of severe injuries. The study concludes that comprehensive policy interventions, including stricter enforcement of traffic laws and mandatory safety training for e-bike riders, are essential to mitigate the risks associated with e-bike use. The findings advocate for an integrated approach to urban traffic management that enhances the safety of all road users, particularly vulnerable e-bike riders.
Resisting the adoption of medical artificial intelligence (AI), it is suggested that this opposition can be overcome by combining AI awareness, AI risks, and responsibility displacement. Through effective integration of public AI dangers and displacement of responsibility, some of these major concerns can be alleviated. The United Kingdom’s National Health Service has adopted the use of chatbots to provide medical advice, whereas heart disease diagnoses can be made by IBM’s Watson. This has the ability to improve healthcare by increasing accuracy, efficiency, and patient outcomes. The resistance may be due to concerns about losing jobs, anxieties about misdiagnosis or medical mistakes, and the consciousness of AI systems drifting more responsibility away from medical professionals. There is hesitancy among healthcare professionals and the general public about the deployment of AI, despite the fact that healthcare is being revolutionised by AI, its uses are pervasive. Participants’ awareness of AI in healthcare, AI risk, resistance to AI, responsibility displacement and ethical considerations were gathered through questionnaires. Descriptive statistics, chi-square tests and correlation analyses were used to establish the relationship between resistance and medical AI. The study’s objective seeks to collect data on primary and public AI awareness, perceptions of risk and feelings of displacement that the professionals have regarding medical AI. Some of these concerns can be resolved when AI awareness is effectively integrated and patients, healthcare providers, as well as the general public are well informed about AI’s potential advantages. Trust is built when, AI related issues such as bias, transparency, and data privacy are critically addressed. Another objective is to develop a seamless integration of risk management, communication and awareness of AI. Lastly to assess how this comprehensive approach has affected hospital settings’ ambitions to use medical AI. Fusing AI awareness, risk management, and effective communication can be used as a comprehensive strategy to address and promote the application of medical AI in hospital settings. An argument made by Chen et al. is that providing training in AI can improve adoption intentions while lowering complexity through the awareness of AI.
This paper studies the patent race problem of communication enterprises investing in communication technologies, and constructs a portfolio optimization model which considers the expected returns, investment risks, and replacement costs, in order to achieve the dual goals of maximizing the net investment income of backward enterprises and minimizing the expected investment risk. Through numerical experimental analysis, the optimal investment portfolio strategy under different risk levels and the impact of different risk levels on the net income of lagging company are obtained. The research results show that due to the backward research in the first stage of the backward enterprises, when their own investment decision-making power is relatively high, they can focus on the development of self-interested key technology areas in order to achieve the victory of the patent race.
This study investigates seismic risk and potential impacts of future earthquakes in the Sunda Strait region, known for its susceptibility to significant seismic events due to the subduction of the Indo-Australian Plate beneath the Eurasian Plate. The aim is to assess the likelihood of major earthquakes, estimate their impact, and propose strategies to mitigate associated risks. The research uses historical seismic data and probabilistic models to forecast earthquakes with magnitudes ranging from 6.0 to 8.2 Mw. The Gutenberg-Richter model helps project potential earthquake occurrences and their impacts. The findings suggest that the probability of a major earthquake could occur as early as 2026–2027, with a more significant event estimated to likely occur around 2031. Economic estimates for a 7.8–8.2 Mw earthquake suggest potential damage of up to USD 1.255 billion with significant loss of life. The study identifies key vulnerabilities, such as inadequate building foundations and ineffective disaster management infrastructure, which could worsen the impact of future seismic events. In conclusion, the research highlights the urgent need for comprehensive seismic risk mitigation strategies. Recommendations include reinforcing infrastructure to comply with seismic standards, implementing advanced early warning systems, and enhancing public education on earthquake preparedness. Additionally, government policies must address these issues by increasing funding for disaster management, enforcing building regulations, and incorporating traditional knowledge into construction practices. These measures are essential to reducing future earthquake impacts and improving community resilience.
Copyright © by EnPress Publisher. All rights reserved.