This study aimed to determine the socio-economic poverty status of those living in rural areas using data surveys obtained from household expenditure and income. Machine learning-based classification and clustering models were proven to provide an overview of efforts to determine similarities in poverty characteristics. Efforts to address poverty classification and clustering typically involve comprehensive strategies that aim to improve socio-economic conditions in the affected areas. This research focuses on the combined application of machine learning classification and clustering techniques to analyze poverty. It aims to investigate whether the integration of classification and clustering algorithms can enhance the accuracy of poverty analysis by identifying distinct poverty classes or clusters based on multidimensional indicators. The results showed the superiority of machine learning in mapping poverty in rural areas; therefore, it can be adopted in the private sector and government domains. It is important to have access to relevant and reliable data to apply these machine learning techniques effectively. Data sources may include household surveys, census data, administrative records, satellite imagery, and other socioeconomic indicators. Machine learning classification and clustering analyses are used as a decision support tool to gain an understanding of poverty data from each village. These strategies are also used to describe the profile of poverty clusters in the community in terms of significant socio-economic indicators present in the data. Village clusters based on an analysis of existing poverty indicators are grouped into high, moderate, and low poverty levels. Machine learning can be a valuable tool for analyzing and understanding poverty by classifying individuals or households into different poverty categories and identifying patterns and clusters of poverty. These insights can inform targeted interventions, policy decisions, and resource allocation for poverty reduction programs.
This study investigates the public’s perceptions of digital innovations in pharmacy, with a focus on health informatics and medication management. Despite the rapid development of these technologies, a comprehensive understanding of how various demographics perceive and interact with them is lacking hence, this research aims to bridge this gap by offering insights into public attitudes and the factors influencing the adoption of digital tools in pharmacy practice, as KSA population and healthcare professionals after Covid-19 has observed the significant potential of digital health. A cross-sectional survey involving 1132 participants was conducted, employing SPSS for data analysis to ensure precise and reliable results. The findings indicate general optimism about the potential of digital innovations to enhance healthcare outcomes but concerns about data privacy and usability significantly affect user acceptance. The researchers recommended tailored educational programs and user-centered design to facilitate the adoption of digital pharmacy innovations. Key contributions include the identification of ‘Ease of Use’ and ‘Data Security and Privacy’ as predominant factors in the adoption of digital health tools.
The provision of clean drinking water is an important public service as more than 700 million people do not have access to this basic need. When it comes to delivering public services in developing countries, government capacity is a crucial element. This study investigates whether state capacity is a significant determinant in the provision of safe drinking water using panel data from 88 developing countries from 1990 to 2017. The paper applies ordinary least squares and fixed effects regression approaches and uses the Bureaucratic Quality Index and the Tax/GDP ratio as metrics of state capacity. The findings indicate that in developing nations, the availability of clean drinking water is positively correlated with state capacity.
This study investigates the intricate relationship between a nation’s GDP growth rate and three key variables: the number of granted patents, research and development (R&D) expenditure, and education expenditure. The purpose of the research is to discern the impact of these factors on GDP growth rates. Drawing on theoretical frameworks, including Dynamic Ordinary Least Squares (DOLS), Fully Modified Ordinary Least Squares (FMOLS), and Canonical Correlation Regression (CCR) techniques, the paper employs a robust methodological approach to unveil insights into the dynamics of economic growth. Contrary to conventional assumptions, the results reveal a negative correlation between R&D expenditure and GDP growth rate. In contrast, the number of patents granted and education expenditure shows a positively significant effect on the GDP growth rate, underscoring the pivotal roles of intellectual property creation and education investment in fostering economic growth. The conclusion emphasizes the importance of a nuanced understanding of these relationships for policymakers. The research’s implications highlight the need for balanced investments in innovation and education. The originality and value of this study lie in its unique findings challenging established beliefs about the impact of R&D expenditure on economic growth.
Bibliometric analysis is a commonly used tool to assess scientific collaborations within the researchers, community, institution, regions and countries. The analysis of publication records can provide a wealth of information about scientific collaboration, including the number of publications, the impact of the publications, and the areas of research where collaborations are most common. By providing detailed information on the patterns and trends in scientific collaboration, these tools can help to inform policy decisions and promote the development of effective strategies to support and enhance scientific collaborations between countries. This study aimed to analyze and visualize the scientific collaboration between Japan and Russia, using bibliometric analysis of collaborative publications from the Web of Science (WoS) database. The analysis utilized the bibliometrix package within the R statistical program. The analysis covered a period of two decades, from 2000 to 2021. The results showed a slight decrease in co-authored publications, with an annual growth rate of −1.26%. The keywords and thematic trends analysis confirmed that physics is the most co-authored field between the two countries. The study also analyzed the collaboration network and research funding sources. Overall, the study provides valuable insights into the current state of scientific collaboration between Japan and Russia. The study also highlights the importance of research funding sources in promoting and sustaining scientific cooperation between countries. The analysis suggests that more efforts in government funding are needed to increase collaboration between the two countries in various fields.
Copyright © by EnPress Publisher. All rights reserved.