The wealth of nations depends on the quality of their infrastructure. Often, however, infrastructure suffers from ineffective investments and poor maintenance. Proposed solutions, such as New Public Management or Public-Private Partnerships (PPPs) tend to develop into Politicians-Private Partnerships as politicians collude with private firms to exploit present and future tax-payers. Therefore, it is necessary to give citizens better control over collective decision making. While there is a significant economic literature on empowering citizens via decentralization and direct democratic institutions, the role of electoral rules has thus far been rather neglected. An interesting case in point is Switzerland, which is well known for its high-quality infrastructure, extensive decentralization, and direct democracy. However, this paper argues that there is an additional and previously neglected institution that moves Swiss politicians away from client politics towards better serving public interest: Switzerland’s unique electoral institutions which effectively combine proportional elections with multi-seat majority elections. We explain how these institutions work, how they enhance the relationships between citizens and public and private entities, and we argue that they could be implemented in other countries.
Japan’s investment in the domestic construction industry has fallen to less than half its peak in 1992. Given the country’s declining population, Japanese construction companies must go global to remain profitable. To what extent the Japanese government and Japanese companies can contribute to meeting the growing infrastructure needs in the region is unclear as Japanese companies have long been operating primarily in Japan. The Japanese government has in recent years passed a series of new laws that encourage private sector participation in financing, building and operating public infrastructure. Through involvement in such public projects, Japanese companies have developed the skills and technologies to build a variety of infrastructures that are resilient to natural disasters and adaptable to various geographical conditions and social and economic development. But the major challenge for Japanese companies is to transform their business model drastically from one that relies on the domestic market to one that contributes to the social and economic development of third countries.
Control of key technological and benchmark flows of polymer fluids poses a number of challenges. Some of them are nowadays under active investigation and rather far from complete understanding. This review considers such phenomena as both practically important and governed by fundamental laws of rheology and non-linear fluid mechanics. We observe, shear bands in polymeric and other complex structured fluids (like wormlike micellar solutions or soft glassy materials), birefrigerent strands, peculiarities of stress and pressure losses in fluids moving through complex shape domains. These and other processes involve inhomogeneity, instabilities and transient modes creeping in flow fields. In practical aspect this is of interest in such industrial process as polymer flooding for Enhanced Oil Recovery (EOR), where a flow inhomogeneity affects a polymer solution injectivity and residual oil saturation. The value of viscoelasticity in the polymer flooding is estimated. The observation is concluded by some new results on relation between polymer concentration in solutions and viscoelastic traits of benchmark flows.
A three-factor experiment was set at the Horticulture Laboratory, Hajee Mohammad Danesh Science and Technology University, Dinajpur, to study the effects of the controlled deterioration (CD) on the pea seeds at the constant temperature of 35 ℃. The 3 factors considered were: 3 pea seed sources (Rangpur Local/RL, Dinajpur Local/DL and Thakurgaon Local/TL); 3 ageing periods (0, 8 and 16 days); and 3 seed moisture contents (12, 16 and 20% MC). The 27 treatment combinations compared in the CRD with the 3 repetitions for the 8 arenas were: % germination, % abnormal seedlings, % dead seeds, % soil emergence and seedling evaluation test for the root and shoot lengths as well as their dry matter contents. Identical prototypes of notable (5–1% level) degradations were recorded everywhere. But the disparities were lucid under the extreme stresses. Moreover, highly noteworthy (1% level) relations were traced amid all the traits ranging from -0.9847 (soil emergence × abnormal seedling) to 0.9623 (soil emergence × normal seedling). So, the CD technique was very effectual in judging the physiological statuses of the seed sources studied. Thus, the germination test might be add-on by a vigor test, the latter of which could be assessed by quantifying the seedlings’ root and shoot lengths and/or their dry matter accumulations. Moreover, in the seed quality certification, the suitable limits of vigor for the chosen traits could also be got by this technique. But the seeds of several pea varieties should be exploited to fix-up the agreeable limits of the traits. Furthermore, to save time, the ageing period could be squeezed by raising the seed MC.
A theoretical investigation of the effect of an inverse parabolic potential on third harmonic generation in cylindrical quantum wires is presented. The wave functions are obtained as solutions to Schrödinger equation solved within the effective mass approximation. It turns out that peaks of the third harmonic generation susceptibility (THGS) associated with nanowires of small radii occur at larger photon energies as compared to those associated with quantum wires of larger radii. The inverse parabolic potential red-shifts peaks of the THGS, and suppresses the amplitude of the THGS. THGS associated with higher radial quantum numbers is diminished in magnitude and blue-shifted, as a function of the photon energy. As a function of the inverse parabolic potential, the THGS still characterized by peaks, and the peaks shift to lower values of the potential as the photon energy increases.
In this research, we employed multivariate statistical methods to investigate the perspectives of small and medium-sized enterprises (SMEs) concerning the Extended Producer Responsibility (EPR) regulation and their apprehensions related to EPR compliance. The EPR regulation, which places the responsibility of waste management on producers, has significant financial and administrative implications, particularly for SMEs. A sample of 114 businesses was randomly selected, and the collected data underwent comprehensive analysis. Our findings highlight that a notable proportion of businesses (44.7%) possess knowledge of the EPR regulation’s provisions, whereas only a marginal fraction (1.8%) lacks sufficient familiarity. We also explored the interplay between opinions on the EPR regulation and concerns regarding its financial and administrative implications. Our results establish a significant correlation between EPR regulation opinions and concerns, with adverse opinions prominently influencing concerns, particularly regarding financial burdens and administrative workloads. These outcomes, derived from the application of multivariate statistical techniques, provide valuable insights for enhancing the synergy between environmental regulations and business practices. EPR regulation significantly affects SMEs in terms of financial, administrative, and legal obligations, thus our study highlights that policymakers may need to consider additional support mechanisms to alleviate the regulatory burden on SMEs, fostering a more effective and sustainable implementation of the EPR regulation.
Copyright © by EnPress Publisher. All rights reserved.