Creative cities as a study discipline have garnered extensive attention and research in theory and practice as a practical approach to urban revitalization and sustainable development. This study conducted a systematic review of academic research on creative cities. Utilizing the visual analysis tools Citespace and VOSviewer, a comprehensive analysis was performed on 570 relevant articles from the Web of Science database. This study analyzed the most influential publications, authors, journals, institutions, and countries within the sample. The investigation spans various disciplinary domains, including geography, environment, culture, and others. Additionally, an exploration of the structure and characteristics of co-cited references was undertaken to enhance our understanding of the theoretical foundations of creative cities research further. Among these, the focal points of the study encompass urban development, urban policies, and the challenges faced. Finally, through co-occurrence analysis of keywords and examining the evolutionary process, the study forecasted that future trends will focus on the practical application of cities to enhance the urban image and improve urban governance from multi-dimensional perspectives such as creativity-related cultural places, public art, and so forth, exploring novel models of creative cities from case to universal. The results of this study can support scholars in grasping the development trends and exploring focal points.
Due to rising global environmental challenges, air/water pollution treatment technologies, especially membrane techniques, have been focused on. In this context, air or purification membranes have been considered effective for environmental remediation. In the field of polymeric membranes, high-performance polymer/graphene nanocomposite membranes have gained increasing research attention. The polymer/graphene nanomaterials exposed several potential benefits when processed as membranes. This review explains the utilization of polymer and graphene-derived nanocomposites towards membrane formation and water or gas separation or decontamination properties. Here, different membrane designs have been developed depending upon the polymer types (poly(vinyl alcohol), poly(vinyl chloride), poly(dimethyl siloxane), polysulfone, poly(methyl methacrylate), etc.) and graphene functionalities. Including graphene in polymers influences membrane microstructure, physical features, molecular permeability or selectivity, and separations. Polysulfone/graphene oxide nanocomposite membranes have been found to be most efficient with an enhanced rejection rate of 90%–95%, a high water flux >180 L/m2/h, and a desirable water contact angle for water purification purposes. For gas separation membranes, efficient membranes have been reported as polysulfone/graphene oxide and poly(dimethyl siloxane)/graphene oxide nanocomposites. In these membranes, N2, CO2, and other gases permeability has been found to be higher than even >99.9%. Similarly, higher selectivity values for gases like CO2/CH4 have been observed. Thus, high-performance graphene-based nanocomposite membranes possess high potential to overcome the challenges related to water or gas molecular separations.
The main objective of the study is to discuss the application of a participatory approach that involves the community of a small rural area in Italy to develop and maintain a sustainable local food system based on a very ancient and high-quality typical local bean. The efficacy of the approach in terms of the active involvement of local actors (farming communities, local administration, social associations, and civil society) and knowledge transfer for preserving the local food culture has been demonstrated. Possible improvements to the approach through digital technologies for stimulating the effective engagement of teenagers have also been discussed.
Accurate temperature control during the induction heating process of carbon fiber reinforced polymer (CFRP) is crucial for the curing effect of the material. This paper first builds a finite element model of induction heating, which combines the actual fiber structure and resin matrix, and systematically analyzes the heating mechanism and temperature field distribution of CFRP during the heating process. Based on the temperature distribution and variation observed in the material heating process, a PID control method optimized by the sparrow search algorithm is proposed, which effectively reduces the temperature overshoot and improves the response speed. The experiment verifies the effectiveness of the algorithm in controlling the temperature of the CFRP plate during the induction heating process. This study provides an effective control strategy and research method to improve the accuracy of temperature control in the induction heating process of CFRP, which helps to improve the results in this field.
Healthcare mobile applications satisfy different aims by frequently exploiting the built-in features found in smart devices. The accessibility of cloud computing upgrades the extra room, whereby substances can be stored on external servers and obtained directly from mobile devices. In this study, we use cloud computing in the mobile healthcare model to reduce the waste of time in crisis healthcare once an accident occurs and the patient operates the application. Then, the mobile application determines the patient’s location and allows him to book the closest medical center or expert in some crisis cases. Once the patient makes a reservation, he will request help from the medical center. This process includes pre-registering a patient online at a medical center to save time on patient registration. The E-Health model allows patients to review their data and the experiences of each specialist or medical center, book appointments, and seek medical advice.
Copyright © by EnPress Publisher. All rights reserved.