The food industry progressively requires innovative and environmentally safe packaging materials with increased physical, mechanical, and barrier properties. Due to its unique properties, cellulose has several potential applications in the food industry as a packaging material, stabilizing agent, and functional food ingredient. A coffee pod is a filter of cellulosic, non-rigid, ready-made material containing ground portions and pressed coffee prepared in dedicated machines. In our study, we obtained, with homogenization and sonication, cellulose micro/nanoparticles from three different coffee pods. It is known that nanoparticulate systems can enter live cells and, if ingested, could exert alterations in gastrointestinal tract cells. Our work aims to investigate the response of HT-29 cells to cellulose nanoparticles from coffee pods. In particular, the subcellular effects between coffee-embedded nanocellulose (CENC) and cellulose nanoparticles (NC) were compared. Finally, we analysed the pathologic condition (Cytolethal Distending Toxin (CDT) from Campylobacter jejuni) on the same cells conditioned by NC and CENC. We evidenced that, for the cellular functional features analysed, NC and CENC pre-treatments do not worsen cell response to the C. jejuni CDT, also pointing out an improvement of the autophagic flux, particularly for CENC preconditioning.
This study evaluated the efficiency and productivity of the manufacturing industries of Singapore. Singapore is one of the world’s most competitive countries and manufacturing giants. All 21 manufacturing industries as classified by Singapore’s Department of Statistics were included in the study as decision-making units (DMUs). Using the Malmquist DEA on data spanning 2015–2021, we found that excerpt for the Paper and Paper product industry, all industries recorded positive total factor productivity (TFP). TFP ranged from 0.977 to 1.481. In terms of technical efficiency, 14 out of 21 industries showed positive efficiency change. The highest TFP was recorded in 2020 and the lowest in 2016. By measuring and improving efficiency, industries in Singapore can achieve cost savings, increase output, and enhance their competitiveness in the global marketplace. In addition, efficiency measurement can help policymakers identify potential areas for improvement and develop targeted policies to promote sustainable economic growth. Given these benefits, performance measurement is inevitable for industries and policymakers in Singapore to achieve economic objectives. Manufacturing industries need to find ways to manage the size and scale of operations as we flag this as an area for improvement.
The use of different energy sources and the worry of running out of some of them in the modern world have made factors such as environmental pollution and even energy sustainability vital. Vital resources for humanity include water, environment, food, and energy. As a result, building strong trust in these resources is crucial because of their interconnected nature. Sustainability in security of energy, water and food, generally decreases costs and improves durability. This study introduces and describes the components of a system named “Desktop Energetic Dark Greenhouse” in the context of the quadruple nexus of water, environment, food, and energy in urban life. This solution can concurrently serve to strengthen the sustainable security of water, environment, food, and energy. For home productivity, a small-scale version of this project was completed. The costs and revenues for this system have been determined after conducting an economic study from the viewpoints of the investor and the average household. The findings indicate that the capital return period is around five years from the investor’s perspective. The capital return on investment for this system is less than 4 years from the standpoint of the households. According to the estimates, this system annually supplies about 20 kg of vegetables or herbs, which means about one third of the annual needs of a family.
In order to seek management alternatives for anthracnose caused by the fungus Colletotrichum gloeosporioides in blackberry (Rubus glaucus Benth.), at the Tibaitatá Research Center of the Colombian Agricultural Research Corporation AGROSAVIA (formerly CORPOICA), an experiment was conducted to evaluate the effect of the application of the major elements nitrogen (N), phosphorus (P), potassium (K) and calcium (Ca) on infections of the fungus C. gloeosporioides strain-52. For this purpose, a randomized complete block design was used with an arrangement of treatments in an orthogonal central composite design. To evaluate the relationship of fertilization levels and disease severity, an artificial inoculation was made on thorny blackberry stems using 0.5 cm mycelial discs at a concentration of 9.53 × 104 conidia. Observations consisted of: disease severity (S), incubation period (IP) and rate of development (r). Data analysis was done by the cluster method on the severity variable, a Pearson correlation analysis between variables, as well as a regression to estimate the effect of nutrients applied on the severity of C. gloeosporioides strain-52. The treatments were concentrated in four groups with the ranges (in parentheses) S (15.9% and 91.8%), PI (9 and 15.3) and Tr (0.0254 and 0.0468). A positive and significant correlation was observed between S and r (P < 0.001) and a negative correlation between PI with S and r (P < 0.001). By means of regression analysis, a linear model was generated that showed a reduction in disease severity with increasing N dose and an increase with the levels of P and Ca applied.
Two kinds of solar thermal power generation systems (trough and tower) are selected as the research objects. The life cycle assessment (LCA) method is used to make a systematic and comprehensive environmental impact assessment on the trough and tower solar thermal power generation. This paper mainly analyzes the three stages of materials, production and transportation of two kinds of solar thermal power generation, calculates the unit energy consumption and environmental impact of the three stages respectively, and compares the analysis results of the two systems. At the same time, Rankine cycle is used to compare the thermal efficiency of the two systems.
Copyright © by EnPress Publisher. All rights reserved.