Knowledge transfer, assimilation, transformation and exploitation significantly impact performing business activities, developing innovations and moving forward to new business models such as transferring to a circular economy. However, organizations’ decisions or willingness to transition to a circular economy are very often also influenced by the external environment. The study aims to determine the influence of the external environment on the transfer from a linear to a circular economy while mediating knowledge assimilation. The quantitative research involved 159 Nordic capital companies operating in Estonia and Lithuania. The survey has been performed by means of the CATI method. The analysis has been done also by applying structural equation modelling (SEM). In order to perform mediation analysis, IBM SPSS and a special PROCESS macro have been used. The study showed that knowledge assimilation partially mediates the relationship between the external environment and the transfer to the circular economy. Hence, the external environment’s direct effect is much more significant than the indirect. The added value of the study also consists in extending the concept of circular economy by including some aspects of absorptive capacity and the external environment.
Graphene, an innovative nanocarbon, has been discovered as a significant technological material. Increasing utilization of graphene has moved research towards the development of sustainable green techniques to synthesize graphene and related nanomaterials. This review article is basically designed to highlight the significant sustainability aspects of graphene. Consequently, the sustainability vision is presented for graphene and graphene nanocomposites. Environmentally sustainable production of graphene and ensuing nanomaterials has been studied. The formation of graphene, graphene oxide, reduced graphene oxide, and other derivatives has been synthesized using ecological carbon and green sources, green solvents, non-toxic reagents, and green routes. Furthermore, the utilization of graphene for the conversion of industrial polymers to sustainable recycled polymers has been studied. In addition, the recycled polymers have also been used to form graphene as a sustainable method. The implication of graphene in the sustainable energy systems has been investigated. Specifically, high specific capacitance and capacitance retention were observed for graphene-based supercapacitor systems. Subsequently, graphene may act as a multi-functional, high performance, green nanomaterial with low weight, low price, and environmental friendliness for sustainable engineering and green energy storage applications. However, existing challenges regarding advanced material design, processing, recyclability, and commercial scale production need to be overcome to unveil the true sustainability aspects of graphene in the environmental and energy sectors.
Bioactive materials are those that cause a number of interactions at the biomaterial-living tissue inter-face that result in the evolution of a mechanically strong association between them. For this reason, an implantable material’s bioactive behavior is highly advantageous. Silicate glasses are encouraged to be used as bioactive glasses due to their great biocompatibility and beneficial biological effects. The sol-gel method is the most effective for preparing silicate glasses because it increases the material’s bioactivity by creating pores. Glass densities are altered by the internal network connectivity between network formers and network modifiers. The increase in the composition of alkali or alkaline oxides reduces the number of bridging oxygens and increases the number of non-bridging oxygens by retaining the overall charge neutrality between the alkali or alkaline cation and oxygen anion. Higher drying temperatures increase pore densities, while the melt-quenching approach encourages the creation of higher density glasses. Band assignments for the BAG structure can be explained in detail using Fourier Transform Infrared (FTIR) and Raman spectroscopic investigations. Raman spectroscopy makes it simple to measure the concentration of the non-bridging oxygens in the silica matrix.
This paper examines the sustainability practices implemented by healthcare establishments, mainly Small and Medium enterprises (SMEs), We focus on identifying opportunities with challenges involved. This systematic literature analyses 47 studies that explore sustainability practices in the healthcare system globally. The finding from the studies reveals that healthcare organizations with SMEs adopt diverse measures like renewable energy, a reduction, and a response procurement in minimizing the impact on the environment and ensuring financial stability. The challenges SMEs face comprise limited financial resources, lack of expertise, with difficulties accessing information and support. Furthermore, we suggest opportunities for SMEs to enhance sustainability practices with partnerships with other organizations and investing in educating employees. Implementation of sustainability practices will improve the financial stability, and environmental impact, with the wellbeing of healthcare stakeholders. The empirical evidence, comparative studies with cross-disciplinary are needed in exploring the effectiveness of the different suitability practices, potential trade-offs, synergies between sustainability and other organizational goals, the effect of sustainability practice in the financial with non-financial performance on SMEs in healthcare establishment are positive, with cost-effectiveness, efficiencies operations, improving brand reputations and engaging the employee. Established factors like regulating frameworks and government initiatives play a major role in the influence of adopting sustainability practices with cultural factors.
The study builds on Deborah Stone’s foundational work exploring the mechanics of causal narratives and their implications for framing problems, assigning responsibility, and guiding policy solutions. The purpose of this research is to unravel the complexities of causal narratives in contemporary politics and understand their profound influence on public policy and society at large. In the digital age, where information is abundant and the traditional gatekeeping role of media has diminished, causal narratives have become increasingly multifaceted. The study aims to explore how these narratives, influenced by the intersections of natural phenomena, human actions, politics, risk, and media, shape public understanding and policy directions. The study employs an extensive review of existing literature, covering works from political science, media studies, and public policy. This includes analyzing seminal texts like Deborah Stone’s “Policy Paradox” and recent studies on media’s evolving role in political discourse. Today’s causal narratives are multifaceted, influenced by a myriad of factors including political agendas, scientific findings, and media portrayals. In conclusion, the research highlights the dynamic nature of causal narratives in the digital age and their significant impact on public policy and societal outcomes. It underscores the need for nuanced understanding and strategic approaches in crafting and interpreting these narratives.
Fire accidents are one of the serious security threats facing the metro, and the accurate determination of the index system and weights for fire assessment in underground stations is the key to conducting fire hazard assessment. Among them, the type and quantity of baggage, which varies with the number of passengers, is an important factor affecting the fire hazard assessment. This study is based on the combination of subjective and objective AHP (Analytic Hierarchy Process) with the available Particle Swarm Optimisation algorithm PSO (Particle Swarm Optimization) and the perfect CRITIC (Criteria Importance Through Intercriteria Correlation) empowered fuzzy evaluation method on the metro station fire hazard toughness indicator system and its weights were determined, and a fuzzy comprehensive evaluation model of metro station safety toughness under the influence of baggage was constructed. The practical application proves that the method provides a new perspective for the fire risk assessment of underground stations, and also provides a theoretical basis for the prevention and control of mobile fire load hazards in underground stations.
Copyright © by EnPress Publisher. All rights reserved.