This paper utilizes an advanced Network Data Envelopment Analysis (DEA) model to examine the impact of mobile payment on the efficiency of Taiwan banking industry. Inheriting the literature, we separate the banking operation process into two stages, namely profitability and marketability. Mobile payment is then considered as the core factor in the second stage. Our paper discovers network DEA model can effectively enhance the analysis of banking industry’s efficiency, and mobile payment has a notable impact on Taiwan banking industry. Regarding the profitability stage, there is only one efficient bank in 2019 and 2022, respectively. These banks also perform better in terms of “mobile payment production”. In the marketability stage, there is also only one bank in 2021 and one bank in 2022, that can reach to unique efficiency score. This indicates many banks attempt to increase earnings per share through investing in mobile payment services. However, the achievement still needs more wait. This leads to the fact that no bank can reach the ultimate overall efficiency. Within our sample, we also find that regarding promoting mobile payment services, Private Banks outperform Government Banks.
The Circular Economy is one of the most prominent cross-disciplinary and cross-sectoral concepts to emerge in recent decades. It has permeated academia, policymaking, business, NGOs, and the general public, leading to numerous applications of the concept, some of which only partially overlap. In this article, we review recent debates and research trends in the Circular Economy, outlining the ten most common groups of its conceptualizations using the PRISMA (Preferred Items for Systematic Reviews and Meta-Analysis) method. We then propose a post disciplinary and transnational research program on the Circular Economy that would not only combine hard and soft sciences in unprecedented ways but also have important practical applications, such as developing tools to embed the Circular Economy in natural, technical, economic, and socio-cultural settings.
This study applies machine learning methods such as Decision Tree (CART) and Random Forest to classify drought intensity based on meteorological data. The goal of the study was to evaluate the effectiveness of these methods for drought classification and their use in water resource management and agriculture. The methodology involved using two machine learning models that analyzed temperature and humidity indicators, as well as wind speed indicators. The models were trained and tested on real meteorological data to assess their accuracy and identify key factors affecting predictions. Results showed that the Random Forest model achieved the highest accuracy of 94.4% when analyzing temperature and humidity indicators, while the Decision Tree (CART) achieved an accuracy of 93.2%. When analyzing wind speed indicators, the models’ accuracies were 91.3% and 93.0%, respectively. Feature importance revealed that atmospheric pressure, temperature at 2 m, and wind speed are key factors influencing drought intensity. One of the study’s limitations was the insufficient amount of data for high drought levels (classes 4 and 5), indicating the need for further data collection. The innovation of this study lies in the integration of various meteorological parameters to build drought classification models, achieving high prediction accuracy. Unlike previous studies, our approach demonstrates that using a wide range of meteorological data can significantly improve drought classification accuracy. Significant findings include the necessity to expand the dataset and integrate additional climatic parameters to improve models and enhance their reliability.
This article presents an analysis of Russia’s outward foreign direct investment based on the balance of payments. The country has been affected by the “Dutch disease,” characterized by a heavy reliance on the mining industry and revenues from oil and gas exports. The financial account reveals a consistent outflow of capital from Russia, surpassing inflows. A significant portion of domestic investment goes abroad, often to offshore destinations. This capital outflow has not been fully offset by foreign capital inflows. These findings underscore the challenges faced by Russia in managing its financial position, including the need to address capital outflows, diversify the economy, and reduce dependence on raw material exports. Furthermore, this article aims to identify the presence of Russian capital in OECD countries by comparing data from the Central Bank of Russia and the OECD. The analysis reveals significant discrepancies between the two datasets, primarily due to unavailable or confidential information in the OECD dataset. These variations can also be attributed to differences in methodology and the specific nature of Russian outward direct investments, particularly those involving offshore jurisdictions. As a result, accurately determining the extent of Russian capital in OECD countries based on the available data becomes a challenging task (including for the tourism industry as well).
Given its insular geographic location, Taiwan inherently benefits from a natural advantage in developing its shipping industry, positioning it as a critical sector for the nation’s economic advancement. The shipping industry operates within a highly competitive maritime market, wherein ocean freight forwarders provide services on a global scale, thus classifying them within the international transportation and logistics industry. The global competition from logistics peers renders the services highly substitutable. This study breaks new ground by integrating the SERVQUAL scale with advanced methodologies such as the Analytic Hierarchy Process (AHP) and Decision-Making Trial and Evaluation Laboratory (DEMATEL) to assess and enhance service quality in the shipping industry. By segmenting the five dimensions of SERVQUAL, the study delineates 19 specific evaluation indicators. The expert questionnaires developed and analyzed through AHP and DEMATEL reveal a previously unidentified link between specific service quality dimensions and customer satisfaction. The findings from this analysis offer crucial insights into the critical success factors (CSFs) of service quality and their causal interrelationships, thereby establishing a model for service standards. By leveraging the identified CSFs and understanding the causal relationships among these key factors, ocean freight forwarders can enhance and optimize their value propositions and resources. This proactive approach is expected to significantly improve service quality, fortify core competitiveness, and elevate customer support and satisfaction levels, ultimately leading to an increased market share and ensuring sustainable business operations.
This study focused on the topic of competences and challenges faced by university teachers in Ecuadorian higher education. The objective of this study was to identify the essential competences that university teachers must possess to confront the current challenges in the Ecuadorian educational field. A mixed research methodology was utilized. A concurrent triangulation design (DITRIAC) was applied. The data collection technique was through documentary study and focus groups. Eight experts in Ecuadorian higher education participated as key informants. Among the findings, there was a consensus on 7 key competences (disciplinary mastery, pedagogical competences, technological skills, research and continuous updating, critical thinking development, ethical and social commitment, flexibility and adaptability to change). It was concluded that Ecuadorian higher education requires teaching professionals who not only master their disciplines and possess advanced pedagogical and technological skills, but who are also leaders in research, promoters of critical thinking, and exemplify ethical commitment and adaptability.
Copyright © by EnPress Publisher. All rights reserved.