The conversion of the energy supply to renewable sources (wind, photovoltaics) will increase the volatility in electricity generation in the future. In order to ensure a balanced power balance in the power grid, storage is required - not only for a short time, but also seasonally. The bidirectional coupling of existing energy infrastructure with the power grid can help here by using the electricity in electrolysis systems to produce hydrogen. The hydrogen can be mixed with natural gas in the existing infrastructure (gas storage, pipelines) to a limited extent or converted directly to methane in a gas-catalytic reaction, methanation, with carbon dioxide and/or carbon monoxide. By using the natural gas infrastructure, the electricity grids are relieved and renewable energies can also be stored over long periods of time. Another advantage of this technology, known as “Power-to-Gas”, is that the methane produced in this way represents a sink for CO2 emissions, as it replaces fossil sources and CO2 is thus fed into a closed cycle.
Research in the field of Power-to-Gas technology is currently addressing technological advances both in the field of electrolysis and for the subsequent methanation, in particular to reduce investment costs. In the field of methanation, load-flexible processes are to be developed that are adapted to the fluctuating supply of hydrogen. The profitability of the Power-to-Gas process chain can be increased through synergistic integration into existing industrial processes. For example, an integrated smelting works offers a promising infrastructural environment, since, on the one hand, process gases containing carbon are produced in large quantities and, on the other hand, the oxygen as a by-product from the water electrolysis can be used directly. Such concepts suggest an economic application of Power-to-Gas technology in the near future.
A review of the CARG Project of the Campania Region (marine counterpart) up to water depths of 200 m is herein proposed referring to the Gulf of Naples (southern Tyrrhenian Sea) aimed at focusing on the main scientific results obtained in the frame of this important project of marine geological cartography. The Gulf of Naples includes several geological sheets, namely n. 464 “Island of Ischia” both at the 1:25,000 and 1:10,000 scale, n. 465 “Island of Procida” at the 1:50,000 scale, n. 466–485 “Sorrento–Termini” at the 1:50,000 scale, n. 446–447 Naples at the 1:50,000 scale, and n. 484 “Island of Capri” at the 1:25,000 scale. The detailed revision of both the marine geological and geophysical data and of the literature data has allowed us to outline new perspectives in marine geology and cartography of Campania Region, including monitoring of coastal zone and individuation of coastal and volcano-tectonic and marine hazards.
Amyloidosis is a systemic disorder produced by the deposition of insoluble protein fibrils that fold and deposit in the myocardium. Patients with amyloidosis and cardiac involvement have higher mortality than patients without cardiac involvement. The two most prevalent forms of amyloidosis associated with cardiac involvement are AL amyloidosis, due to the deposition of immunoglobulin light chains, and ATTR amyloidosis, due to the deposition of the transthyretin (TTR) protein in mutated or senile form. This article aims to review the different cardiac imaging modalities (echocardiography, cardiac magnetic resonance imaging, nuclear medicine and tomography) that allow to determine the severity of cardiac involvement in patients with amyloidosis, the type of amyloidosis and its prognosis. Finally, we suggest a diagnostic algorithm to determine cardiac involvement in amyloidosis adapted to locally available diagnostic tools, with a practical and clinical approach.
In the present research work, we investigated the use of the image intensifier in the extraction of radiopaque foreign bodies in traumatology. First of all, it is necessary to clarify that this method constitutes an essential component of practically generalized use, in which low current level radiation is used, that is, fluoroscopic radiation, so that it can be applied for a considerably longer time than that of the longest radiographic exposure. This tool works with a tube intended for this purpose, which is known as fluoroscopy. The radiations from the tube pass through the patient and reach the serigraph, on which the image intensifier or fluoroscopic screen is mounted. In the latter case, this is where the chain ends, since it is on this screen that the image is formed and where the physician directly observes the region to be studied. It is also necessary to define that a foreign body is any element foreign to the body that enters it, either through the skin or through any natural orifice such as the eyes, nose, throat, preventing its normal functioning. It was possible to obtain as a result that the advantages of fluoroscopic navigation are the reduction of surgical time and the amount of irradiation, which goes from about 140 seconds without navigation to only 8 seconds, which is a substantial difference. Among the conclusions, it was possible to highlight that in the case of a radiopaque object, it is essential to have an image intensifier for localization of the foreign body during surgery; while in the case of a radiolucent foreign body, it is more advisable to locate it through the clinic, since these tend to form granulomas.
Currently there is a great acceptance in medicine and dentistry that clinical practice should be “evidence-based” as much as possible. That is why multiple works have been published aimed at decreasing radiation doses in the different types of imaging modalities used in dentistry, since the greater effect of radiation, especially in children, forces us to take necessary measures to rationalize its use, especially with Cone Beam computed tomography (CBCT), the method that provides the highest doses in dentistry. This review was written using such an approach with the purpose of rationalizing the radiation dose in our patients. In order to formulate recommendations that contribute to the optimization of the use of ionizing radiation in dentistry, the SEDENTEXCT project team compiled and analyzed relevant publications in the literature, guidelines that have demonstrated their efficiency in the past, thus helping to see with different perspectives the dose received by patients, and with this, it is recommended taking into account this document so as to prescribe more adequately the complementary examinations that we use on a daily basis.
Taking the west slope of Cangshan Mountain in Yangbi County, Dali as the research site, on the basis of investigating the local natural geographical conditions, topography and biodiversity status of Cangshan Mountain, the CAP protection action planning method was adopted, and the priority protection objects were determined to be native forest vegetation, rare and endangered flora and fauna, alpine vertical ecosystems, hard-leaf evergreen broad-leaved forests and cold-tempered coniferous forests; The main threat factors were commercial collection, tourism development and overgrazing. Biodiversity conservation on the western slope of Cangshan Mountain should take species as “point”, regional boundary as “line”, ecosystem and landscape system as “plane”, so as to realize the overall planning structure system combining “point—line—plane”, which can be divided into conservation core area, buffer zone and experimental area. The results can provide a reference for biodiversity conservation on the western slope of Cangshan Mountain.
Copyright © by EnPress Publisher. All rights reserved.