Objective: To describe magnetic resonance imaging (MRI) findings of the brain in patients younger than 65 years who were studied by transcranial Doppler (TCD) with microbubble contrast, with a history of cryptogenic cerebrovascular accident (CVA) and suspected patent foramen ovale (PFO).
Materials and methods: This retrospective cross-sectional study included patients of both sexes, younger than 65 years of age.
Results: Our sample (n = 47.47% male and 53% female, mean age is 42 years) presented high-intensity transient signals (HITS) positive in 61.7% and HITS-negative in 38.3%. In HITS-positive patients, lesions at the level of the subcortical U-brains, single or multiple with bilaterally symmetrical distribution, predominated. In patients with moderate HITS, lesions in the vascular territory of the posterior circulation predominated.
Conclusion: In patients younger than 65 years with cryptogenic stroke and subcortical, single or multiple U-shaped lesions with bilateral and symmetrical distribution, a PFO should be considered as a possible cause of these lesions.
In Costa Rica, there is no explicit recommendation from the competent authorities for the use of a specific phantom, so experts must explore what suppliers offer, among which the Normi Mam Digital phantom from PTW stands out. This article presents the results of the dosimetry and image quality control applied to the Normi Mam Digital phantom to validate it as equipment that complies with the recommendations of the Human Health Series No. 17. The results obtained were satisfactory, proving that the equipment complies with the tolerances recommended by international health bodies.
Introduction: Given the heterogeneous nature and inherent complexity of forensic medical expertise, the expert (medical professional or related areas) must make the best use of the technical and technological tools at his disposal. Imaging, referring to the set of techniques that allow obtaining images of the human body for clinical or scientific purposes, in any of its techniques, is a powerful support tool for establishing facts or technical evidence in the legal field. Objective: To analyze the use of magnetic resonance and computed tomography in postmortem diagnosis. Methodology: information was searched in the databases PubMed, Science Direct, Springer Journal and in the search engine Google Scholar, using the terms “X-Ray Computed Tomography”, “Magnetic Resonance Spectroscopy”, “Autopsy” and “Forensic Medicine” published in the period 2008–2015. Results: MRI is useful for the detailed study of soft tissues and organs, while computed tomography allows the identification of fractures, calcifications, implants and trauma. Conclusions: In the reports found in the literature search, regarding the use of nuclear magnetic resonance and computed tomography in postmortem cases, named by the genesis of the trauma, correlation was found between the use of imaging and the correct expert diagnosis at autopsy.
The micro staring hyperspectral imager can simultaneously acquire two spatial and one spectral images, and only record the external orientation elements of the entire hyperspectral image rather than the external orientation elements of each frame of the image, which avoids the geometric instability during scanning, effectively solves the problem of large geometric deformation of the small line scanning hyperspectral imager, and is suitable for the small UAV load platform with unstable attitude. At present, most of the research focuses on the radio-metric correction method of line scan hyperspectral imager. The application time of staring hyperspectral imager is short, and there is no mature data processing re-search at home and abroad, which hinders the application of UAV micro staring hyperspectral imaging system. In this paper, the calibration method of the linearity and variability of the radiation response of the micro staring hyperspectral imager on the UAV is studied, and the effectiveness of this method is quantitatively evaluated. The results show that the hyperspectral image has obvious vignetting effect and strip phenomenon before the correction of radiation response variability. After the correction, the radiation response variation coefficient of pixels in different bands decreases significantly, and the vignetting effect and image strip decrease significantly. In this paper, a multi-target radiometric calibration method is proposed, and the accuracy of radiometric calibration is verified by comparing the calibrated hyperspectral image spectrum with the measured ground object spectrum of the ground spectrometer. The results show that the calibration results of the multi-target radiometric calibration method show better results, especially for the near-infrared band, and the difference with the surface reflectance measured by the spectrometer is small.
Deficiencies in postharvest technology and the attack of phytopathogens cause horticultural products, such as tomatoes to have a very short shelf life. In addition to the economic damage, this can also have negative effects on health and the environment. The objective of this work is to evaluate an active coating of sodium alginate in combination with eugenol-loaded polymeric nanocapsules (AL-NP-EUG) to improve the shelf life of tomato. Using the nanoprecipitation technique, NPs with a size of 171 nm, a polydispersity index of 0.113 and a zeta potential of −2.47 mV were obtained. Using the HS-SPME technique with GC-FID, an encapsulation efficiency percentage of 31.85% was determined for EUG. The shelf-life study showed that the AL-NP-EUG-treated tomatoes maintained firmness longer than those without the coating. In addition, the pathogenicity test showed that tomatoes with AL-NP-EUG showed no signs of damage caused by the phytopathogen Colletotrichum gloesporoides. It was concluded that the formulation of EUG nanoencapsulated and incorporated into the edible coating presents high potential for its application as a natural nanoconservative of fruit and vegetable products such as tomato.
In the past three decades, nanotechnology has attracted extensive attention. People have many expectations on the utilization of nanotechnology in medicine, but unfortunately, these expectations are unlikely to be realized. In the field of nanotechnology, the niche for building commercial products has not been developed yet. However, metal nanoparticles have attracted people’s attention since ancient times because of their optical properties, which are very different from those of bulk metals. By understanding the origin of these optical properties and using current technology, these nanoparticles can be manipulated to build a palette. Using micro measurement equipment, the palette can be printed with very good resolution.
Copyright © by EnPress Publisher. All rights reserved.