This work shows the results of the biosynthesis of silver nanoparticles using the microalga Chlorella sp, using growth media with different concentrations of glycerol, between 5%–20%, and different light and temperature conditions. The synthesis of nanoparticles was studied using supernatants and pellets from autotrophic, heterotrophic and mixotrophic cultures of the microalga. The presence of nanoparticles was verified by ultraviolet-visible spectroscopy and the samples showing the highest concentration of nanoparticles were characterized by scanning electron microscopy. The mixotrophic growth conditions favored the excretion of exopolymers that enhanced the reduction of silver and thus the formation of nanoparticles. The nanoparticles obtained presented predominantly ellipsoidal shape with dimensions of 108 nm × 156 nm and 87 nm × 123 nm for the reductions carried out with the supernatants of the mixotrophic cultures with 5% and 10% glycerol, respectively.
Map is the basic language of geography and an indispensable tool for spatial analysis. But for a long time, maps have been regarded as an objective and neutral scientific achievement. Inspired by critical geography, critical cartography/GIS came into being with the goal of clarifying the discourse embedded in cartographic practice. Power relationship challenges the untested assumption in map representation that is taken for granted. After more than 40 years of debate and running in, this research field has initially shown an outline, and critical cartography/GIS has roughly formed two research directions: the deconstruction path mainly starts from the identity of cartography subject and the process of map knowledge production, and analyzes the inseparable relationship between cartography and national governance and its internal power mechanism respectively; the construction path mainly relies on cooperative mapping and anti-mapping to realize the reproduction of map data. Domestic critical cartography/GIS research has just started, and it is necessary to continue to absorb the achievements of critical geography and carry out research in different historical periods. The deconstruction research of different types of maps also needs to strengthen the in-depth bridging between the construction path and the deconstruction path, and to be more open to the public. Impartial map application research, and actively apply the research results to social practice.
Universities play a key role in university-industry-government interactions and are important in innovation ecosystem studies. Universities are also expected to engage with industries and governments and contribute to economic development. In the age of artificial intelligence (AI), governments have introduced relevant policies regarding the AI-enabled innovation ecosystem in universities. Previous studies have not focused on the provision of a dynamic capabilities perspective on such an ecosystem based on policy analysis. This research work takes China as a case and provides a framework of AI-enabled dynamic capabilities to guide how universities should manage this based on China’s AI policy analysis. Drawing on two main concepts, which are the innovation ecosystem and dynamic capabilities, we analyzed the importance of the AI-enabled innovation ecosystem in universities with governance regulations, shedding light on the theoretical framework that is simultaneously analytical and normative, practical, and policy-relevant. We conducted a text analysis of policy instruments to illustrate the specificities of the AI innovation ecosystem in China’s universities. This allowed us to address the complexity of emerging environments of innovation and draw meaningful conclusions. The results show the broad adoption of AI in a favorable context, where talents and governance are boosting the advance of such an ecosystem in China’s universities.
Species of the Moraceae family are of great economic, medicinal and ecological importance in Amazonia. However, there are few studies on their diversity and population dynamics in residual forests. The objective was to determine the composition, structure and ecological importance of Moraceae in a residual forest. The applied method was descriptive and consisted of establishing 16 plots of 20 m × 50 m (0.10 ha), in a residual forest of the Alexánder von Humboldt substation of the National Institute of Agrarian Innovation-INIA, Pucallpa, department of Ucayali, where individuals of arboreal or hemi-epiphytic habit, with DBH ≥ 2.50 cm, were evaluated. The floristic composition was represented by 33 species, distributed in 12 genera; five species not recorded for Ucayali were found. Structurally, the family was represented by 138 individuals/ha with a horizontal distribution similar to an irregular inverted “J”. However, there were different horizontal structures among species. It was determined that 85% of the species were in diameter class I (2.50 to 9.99 cm), being the most abundant Pseudolmedia laevis (Ruiz & Pav.) J.F. Macbr. (41.88 individuals/ha); and the most dominant were Brosimum utile (Kunth) Oken (1.71 m2∕ha) and Brosimum alicastrum subsp. bolivarense (Pittier) C.C.Berg (0.90 m2/ha). Likewise, P. laevis and B. utile were the most ecologically important. The information from the present research will allow the establishment of a baseline, which can be used to propose the management of Moraceae in residual forests in the same study area.
This work was carried out with the purpose of generating ecological and silvicultural information oriented to sustainable management. The horizontal structure was evaluated using the importance value index of Curtis and Macintosh, the vertical structure using Finol’s methodology. Through the sociological position index, the percentage natural regeneration and the extended importance value index were estimated in order to infer the permanence of the forest ecosystem. The floristic composition was represented by species of the families Anacardiaceae, Apocynaceae, Fabaceae, Santalaceae, Rhamnaceae, Sapotaceae, Simarubaceae, Ulmaceae, Zygophyllaceae, Capparidaceae, Borraginaceae and Achatocarpaceae. In the horizontal structure, the species with the highest rank was Acacia praecox, followed in order of importance by Schinopsis balansae, Aspidosperma quebracho blanco and Prosopis kuntzei. According to sociological position, Acacia praecox was the most representative species, followed by Patagonula americana, Schinus longifolius, Proposis kuntzei and Aspidosperma quebracho blanco. The species with the best regeneration values were Achatocarpus nigricans and Acacia praecox in the shrub layer and Patagonula americana in the tree layer. The extended importance index consolidated the category of Acacia praecox in the community and gave a better category to Schinopsis balansae, Aspidosperma quebracho blanco, Prosopis kuntzei and Patagonula americana.
A topic of current interest in forestry science concerns the regeneration of degraded forests and areas. Within this topic, an important aspect refers to the time that different forests take to recover their original levels of diversity and other characteristics that are key to resume their functioning as ecosystems. The present work focuses on the premontane rainforests of the central Peruvian rainforest, in the Chanchamayo valley, Junín, between 1,000 and 1,500 masl. A total of 19 Gentry Transects of 2 × 500 m, including all woody plants ≥2.5 cm diameter at breast height were established in areas of mature forests, and forests of different ages after clear-cutting without burning. Five forest ages were considered, 5-10, 20, 30, 40 and ≥50 years. The alpha-diversity and composition of the tree flora under each of these conditions was compared and analyzed. It was observed that, from 40 years of age, Fisher’s alpha-diversity index becomes quite similar to that characterizing mature forests; from 30 years of age, the taxonomic composition by species reached a similarity of 69–73%, like those occurring in mature forests. The characteristic botanical families, genera and species at each of the ages were compared, specifying that as the age of the forest increases, there are fewer shared species with a high number of individuals. Early forests, up to 20 years of age, are characterized by the presence of Piperaceae; after 30 years of age, they are characterized by the Moraceae family.
Copyright © by EnPress Publisher. All rights reserved.