Over the last few decades, countries in the South have been undergoing rapid urbanization, as if to make up for lost time. Sub-Saharan Africa is characterized by a very low urbanization rate compared to0 the rest of the world. Although the African continent reached its urban transition in 2015, Niger remains by far the least urbanized country, with a rate of 17%. The city of Niamey is the main urban center, with an estimated population of 1,449,801 hbts in 2023, spread over an area of around 33,100 ha. The aim of this study is to analyze the spatial expansion of the city of Niamey from 1984 to 2023. The main data used in this study are raster images from the United States Geological Survey (USGS), vector data from Open Sources Map (OSM) and GoogleEarth, secondary data from the National Institute of Statistics (INS) and field observation. This study enabled us to conclude that between 1984 and 2023, the city of Niamey underwent very strong spatial expansion. The city grew from 4,690 ha to 33,100 ha, i.e. 28,410 ha absorbed in 39 years, with exceptional growth between 2014 and 2023, when the urban area doubled. Its population has risen from 397,437 at the time of the 1988 general population and housing census to an estimated 1,449,801 in 2023 (INS), an increase of 1,052,364 in 35 years. Between these two dates, population density fell from 87.7 to 43.8 inhabitants/km2, i.e. half that of 1984. This spatial expansion has resulted in unprecedented peri-urbanization.
Objective: As the scale and importance of official development assistance (ODA) continue to grow, the need to enhance the effectiveness of ODA policies has become more critical than ever before. In this context, it is essential to systematically classify recipient countries and establish tailored ODA policies based on these classifications. The objective of this study is to identify an appropriate methodology for categorizing developing countries using specific criteria, and to apply it to actual data, providing valuable insights for donor countries in formulating future ODA policies. Design/Methodology/Approach: The data used in this study are the basic statistics on the Sustainable Development Goals (SDGs) published annually in the SDGs Report. The analytical method employed is decision tree analysis. Results: The results indicate that the 167 countries analyzed were classified into 10 distinct nodes. The study further limited the scope to the five nodes representing the most disadvantaged developing countries and suggested future directions for aid policies for each of these nodes.
The objective of this paper is to analyze the impact of infrastructure financing on economic growth in emerging markets through the application of both quantitative and qualitative research methodologies. In this study, the research will employ both primary and secondary data to investigate the impact of different structures of infrastructure financing on the performance of the economy through interviews with the stakeholders and policy documents alongside quantitative data from the World Bank and the IMF. The quantitative analysis employs the econometric models to establish the effect of infrastructure investment on the GDP growth of the selected countries, India, China, Brazil, and Nigeria. Additional secondary qualitative data obtained from interviews with policymakers and financial specialists from Brazil, India, and South Africa offer more practical information regarding the efficiency of the discussed financing approaches. This paper is therefore able to conclude that appropriate management of infrastructure investments, particularly those that involve the PPP, are central to the development of the economy. However, certain drawbacks such as the lack of regularity of data and the disparity in the effectiveness of financing instruments by the regions are pointed out. The research provides policy implications to policymakers and investors who wish to finance infrastructure in the emerging economy to enhance economic growth in the long run.
Infrastructure decision-making has traditionally been focused on the use of cost-benefit analysis (CBA) and multicriteria decision analysis (MCDA). Nevertheless, there remains no consensus in the infrastructure sector regarding a favored approach that comprehensively integrates resilience principles with those tools. This review focuses on how resilience has been evaluated in infrastructure projects. Initially, 400 papers were sourced from Web of Science and Scopus. After a preliminary review, 103 papers were selected, and ultimately, the focus was narrowed down to 56 papers. The primary aim was to uncover limitations in both CBA and MCDA, exploring various strategies for amalgamating them and enhancing their potential to foster resilience, sustainability, and other infrastructure performance aspects. Results were classified based on different rationalities: i) objectivist, ii) conformist, iii) adjustive, and iv) reflexive. The analysis revealed that while both CBA and MCDA contribute to decision-making, their perceived strengths and weaknesses differ depending on the chosen rationality. Nonetheless, embracing a broader perspective, fostering participatory methods, and potentially integrating both approaches seem to offer more promising avenues for assessing the resilience of infrastructures. The goal of this research proposal is to devise an integrated approach for evaluating the long-term sustainability and resilience of infrastructure projects and constructed assets.
In order to diversify a portfolio, find prices, and manage risk, derivatives products are now necessary. There is a lack of understanding of the true influence of derivatives on the behavior of the underlying assets, their volatility consequences, and their pricing as complex instruments. There is a dearth of empirical research on how these instruments impact company risk exposures and inconsistent findings. This study examines corporate derivatives’ impact on stock price exposure and systematic risk in South African non-financial firms. Using a dataset of listed firms from 2013 to 2023, we employ Generalized Autoregressive Conditional Heteroscedasticity (GARCH) models to assess the effect of derivatives on return volatility and beta, a measure of systematic risk. Additionally, we apply the Generalized Method of Moments (GMM) to address potential endogeneity between firm characteristics and derivatives use. Our findings suggest that firms using derivatives experience lower overall volatility and reduced systematic risk compared to non-users. The results are robust to various control factors, including firm size, leverage, and macroeconomic conditions. This study fills a gap in the literature by focusing on an underrepresented emerging market and provides insights relevant to global risk management practices.
Copyright © by EnPress Publisher. All rights reserved.